

Ministry of Education and Science of Ukraine
Zaporizhzhia National Technical University

Volodymyr Dahl East Ukrainian National University
National Aerospace University “Kharkiv Aviation Institute”

V.V. Shkarupylo, R.K. Kudermetov, I.S. Skarga-Bandurova,
A.Yu. Velykzhanin, L.O. Shumova, D.S. Mazur,

V.S. Kharchenko, D.D. Uzun, Y.O. Uzun, P.A. Hodovaniuk

Internet of Things for Industry and Human Applications

Software defined networks
and Internet of Things

Practicum

Edited by R.K. Kudermetov

Project
ERASMUS+ ALIOT “Internet of Things: Emerging Curriculum
for Industry and Human Applications” (573818-EPP-1-2016-1-

UK-EPPKA2-CBHE-JP)

2019

UDC 004.7:004.6+004.415/.416](076.5)=111
П78

Reviewers:
Prof., Dr. Felicita Di Giandomenico, ISTI-CNR, Pisa, Italy
Prof., DrS. Volodymyr Opanasenko, State Prize Winner of Ukraine,
V.M. Glushkov Institute of Cybernetics of NAS, Ukraine

П78 V.V. Shkarupylo, R.K. Kudermetov, I.S. Skarga-Bandurova, A.Yu.
Velykzhanin, L.O. Shumova, D.S. Mazur, V.S. Kharchenko, D.D. Uzun, Y.O Uzun,
P.A. Hodovaniuk. Software defined networks and Internet of Things: Practicum
/ Kudermetov R.K. (Ed.) – Ministry of Education and Science of Ukraine,
Zaporizhzhia National Technical University, Volodymyr Dahl East
Ukrainian National University, National Aerospace University “KhAI”, 2019. –
129 p.

ISBN 978-617-7361-93-9
The materials of the practical part of the study course “PC2. Software defined networks and IoT”,

developed in the framework of the ERASMUS+ ALIOT project “Modernization Internet of Things:
Emerging Curriculum for Industry and Human Applications Domains” (573818-EPP-1-2016-1-UK-
EPPKA2-CBHE-JP).

Practicum materials are supposed to be used by PhD-students in sphere of computer networking,
software engineering etc., and aimed at delivering the essential knowledge and practical skills on the
topic of Mininet emulator usage for the purpose of typical engineering tasks solving, covering,
in particular, the aspects of programming – for the purpose of automation tasks solving. Practicum
is devoted to development, implementation and testing of SDN-based IoT-solutions. Moreover,
techniques and tools of DevOps application in context IoT and Big Data are described.

Practicum materials are intended to be used by the PhD-students on computer networking, software
engineering, and engineers and researches involved in the development, implementation and testing of
SDN-based IoT-solutions and DevOps techniques application.

Ref. – 39 items, figures – 65, tables - 2.
Approved by Academic Council of National Aerospace University “Kharkiv Aviation Institute”

(record No 4, December 19, 2018).
ISBN 978-617-7361-93-9
© V.V. Shkarupylo, R.K. Kudermetov, I.S. Skarga-Bandurova, L.O. Shumova, A.Yu.

Velykzhanin, D.S. Mazur, D.D. Uzun, V.S. Kharchenko, D.D. Uzun, Y.O. Uzun, P.A.
Hodovaniuk

This work is subject to copyright. All rights are reserved by the authors, whether the
whole or part of the material is concerned, specifically the rights of translation, reprinting,
reuse of illustrations, recitation, broadcasting, reproduction on microfilms, or in any other
physical way, and transmission or information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar.

Міністерство освіти і науки України
Запорізький національний технічний університет

Східноукраїнський національний університет ім. В. Даля
Національний аерокосмічний університет

ім. М. Є. Жуковського «Харківський авіаційний інститут”

В.В. Шкарупило, Р.В. Кудерметов, Д.С. Мазур, І.С. Скарга-Бандурова,
Л.О. Шумова, А.Ю. Великжанін, В.С. Харченко, Д.Д. Узун,

 Ю.О. Узун, П.А. Годованюк

Інтернет речей
для

індустріальних і гуманітарних застосунків

ПРОГРАМНО-КОНФІГУРОВАНІ МЕРЕЖІ ТА
ІНТЕРНЕТ РЕЧЕЙ

Практикум

Редактор Кудерметов Р.К.

Проект ERASMUS+ ALIOT
 “Інтернет речей: нова освітня програма для потреб

промисловості та суспільства”
(573818-EPP-1-2016-1-UK-EPPKA2-CBHE-JP)

2019

УДК 004.7:004.6+004.415/.416](076.5)=111
П78

Рецензенти: Проф., д-р Фелічіта Ді Джандоменіко, ISTI-CNR, Піза, Італія
 Д.т.н., проф. Володимир Опанасенко, Лауреат Державної премії України,
 Інститут кібернетики ім. В.М.Глушкова НАН України

П78 В.В. Шкарупило, Р.В. Кудерметов, Д.С. Мазур, І.С. Скарга-Бандурова, Л. О.
Шумова, А. Ю. Великжанін, В.С. Харченко, Д.Д. Узун, Ю.О. Узун, П.А. Годованюк.
Програмно-конфігуровані мережі та Інтернет Речей: Практикум / За ред.
Кудерметова Р.К. – МОН України, Запорізький національний технічний університет,
Східноукраїнський національний університет ім. В. Даля, Національний аерокосмічний
університет ім. М. Є. Жуковського «ХАІ». – 129 с.

ISBN 978-617-7361-93-9
Викладено матеріали практичної частини курсу PC4 “ Програмно-конфігуровані

мережі та ІoТ ”, підготовленого в рамках проекту ERASMUS+ ALIOT “ Internet of Things:
Emerging Curriculum for Industry and Human Applications” (573818-EPP-1-2016-1-UK-
EPPKA2-CBHE-JP).

Матеріали для практикуму призначені для докторантів у галузі комп'ютерних
мереж, інженерії програмного забезпечення тощо та спрямовані на надання необхідних
знань та практичних навичок щодо використання емулятора Mininet для вирішення
типових інженерних завдань, що охоплюють, зокрема, аспекти програмування для
вирішення завдань автоматизації. Крім того, практикум присвячено дослідженням,
розробці, впровадженню та тестуванню IoT-рішень на основі SDN, а також впровадженню
DevOps методології в контексті ІоТ і великих даних.

Призначено для інженерів, розробників та науковців, які займаються розробкою та
впровадженням IoT систем, для аспірантів університетів, які навчаються за напрямами IoT,
кібербезпеки в мережах, комп'ютерних наук, комп'ютерної та програмної інженерії, а також
для викладачів відповідних курсів.

Бібл. – 39, рисунків – 65, таблиць -2.

Затверджено Вченою радою Національного аерокосмічного університету
«Харківський авіаційний інститут» (протокол № 4, 19 грудня 2018).

ISBN 978-617-7361-93-9.
© В.В. Шкарупило, Р.В. Кудерметов, Д.С. Мазур, І.С. Скарга-Бандурова, Л.О. Шумова,
А.Ю. Великжанін, В.С. Харченко, Д. Д. Узун, Ю.О. Узун, П.А. Годованюк
Ця робота захищена авторським правом. Всі права зарезервовані авторами, незалежно від

того, чи стосується це всього матеріалу або його частини, зокрема права на переклади на інші
мови, перевидання, повторне використання ілюстрацій, декламацію, трансляцію, відтворення на
мікрофільмах або будь-яким іншим фізичним способом, а також передачу, зберігання та
електронну адаптацію за допомогою комп'ютерного програмного забезпечення в будь-якому
вигляді, або ж аналогічним або іншим відомим способом, або ж таким, який буде розроблений в
майбутньому.

3

Abbreviations

ABBREVIATIONS

API – Application Programming Interface

CI/CD – Continuous Integration / Continuous Delivery

CLI – Command Line Interface

DHCP – Dynamic Host Configuration Protocol

GUI – Graphical User Interface

HTML – HyperText Markup Language

ICMP – Internet Control Message Protocol

IP – Internet Protocol

LSA – Link State Advertisement

ONOS – Open Network Operating System

OS – Operating System

OSPF – Open Shortest Path First

PING – Packet Internet Group

POCO – Pareto-Optimal Controller

QoE – Quality of Experience

QoS – Quality of Service

RTP/TS – Real-time Transport Protocol

RTT – Round-trip Time

SDLC – Software Development Lifecycle

SDN – Software Defined Networking (Network)

SDP – Specification of Developed Project

SPF – Shortest Path First

SSH – Secure Shell

VM – Virtual Machine

VND – Visual Network Description

4

Introduction

INTRODUCTION

The materials of the practical part of the study course “PC2.

Software defined networks and IoT”, developed in the framework of the

ERASMUS+ ALIOT project “Modernization Internet of Things:

Emerging Curriculum for Industry and Human Applications Domains”

(573818-EPP-1-2016-1-UK-EPPKA2-CBHE-JP)1.

Nowadays, the paradigm of Software-defined networking (SDN) is

broadly considered to be the basis for the Internet of Things (IoT)

solutions implementation. The defining features of Software-defined

networks are programmability, easiness of network topology

reconfiguration, centralized control, automation, etc. To test the

soundness of resulting SDN-solutions, especially the functioning of the

controller – centralized control unit, different emulators are brought to

the table. One of those that is widely used is the Mininet environment,

providing the reliable basis for diverse industrial scenarios and

implementations.

Practicum materials are supposed to be used by PhD-students in

sphere of computer networking, software engineering etc., and aimed at

delivering the essential knowledge and practical skills on the topic of

Mininet emulator usage for the purpose of typical engineering tasks

solving, covering, in particular, the aspects of programming – for the

purpose of automation tasks solving. Moreover, practicum is devoted to

engineers and researches involved in the development, implementation

and testing of SDN-based IoT-solutions.

Practicum covers four modules: PCM 2.1 “Software defined

networks basics”, PCM 2.2 “SDN programming and simulation of SDN

composing, configuring and scaling”, PCM 2.3 “Algorithms and

applications for utilization of SDN technology to IoT” and PCM 2.4
"Development of project for SDN-DevOps using modern CI/CD tools".

The PCM2.1 “Software defined networks basics” module covers

one laboratory work – “Installation and configuration of Mininet

environment”. This laboratory work is devoted to covering the basics of

Mininet emulator utilization – command line usage, network topology

creation and testing aspects.

1 The European Commission's support for the production of this publication does not

constitute an endorsement of the contents, which reflect the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the

information contained therein.

5

Introduction

The PCM2.2 “SDN programming and simulation of SDN

composing, configuring and scaling” module covers one laboratory work

– “Working in MiniEdit graphical environment”. This laboratory work is

devoted to covering the peculiarities of MiniEdit graphical utility of

Mininet emulator usage, aiming at clarification and simplification of

engineer/developer work experience.

The PCM2.3 “Algorithms and applications for utilization of SDN

technology to IoT” module covers three laboratory works and three

tutorials aimed, in particular, at teaching SDN controllers, Quality of

Services in SDN, IoT data streaming over SDN.

The PCM2.4 "Development of project for SDN-DevOps using
modern CI/CD tools" module covers the principles of DevOps
techniques and processes of software development lifecycle in context
of IoT and Big Data.

Each laboratory work is structured as follows: brief theoretical

information disclosing the specifics of work; execution of work as the

sequence of steps to be done; recommendations on report creation;

control questions to be briefly answered in the report.

Practicum is prepared by Assoc. Prof., Dr. V.V. Shkarupylo, Assoc.

Prof., Dr. R.K. Kudermetov, MSc student D.S. Mazur, (Zaporizhzhia

National Technical University), Prof., DrS. I.S. Skarga-Bandurova, PhD

student A.Yu. Velykzhanin, Dr. L.O. Shumova (Volodymyr Dahl East

Ukrainian National University), Prof., DrS. V.S. Kharchenko, Assoc.

Prof., Dr. D.D. Uzun, Senior Lecturer Y.O. Uzun, PhD student P.A.

Hodovaniuk (National Aerospace University “KhAI”).

General editing has been performed by Head of Computer Systems

and Networks Department of Zaporizhzhia National Technical

University, Assoc. Prof., Dr. R.K. Kudermetov.

The authors are grateful to the reviewers, project colleagues,

fellows of the departments of academic organizations for valuable

information, methodological assistance and constructive suggestions that

have been made during practicum materials discussion and preparation.

6

PCM2.1 Software defined networks basics

PCM2.1. Software defined networks basics

Assoc. Prof., Dr. V.V. Shkarupylo, Assoc. Prof., Dr.

R.K. Kudermetov, MSc student D.S. Mazur (ZNTU)

Laboratory work 1

INSTALLATION AND CONFIGURATION OF MININET

ENVIRONMENT

Goal: get familiar with technical aspects of Software defined

network functioning and usage; obtain practical skills in sphere of

Mininet emulator installation, configuration and utilization.

Laboratory work participants: lecturers, scientists, technical staff,

students and post-graduate students of the department (faculty, institute)

of the university; developers, engineers, trainees.

1.1. Theoretical information

Current level of global networking evolution can be characterized as

follows: there is a vital need for such system control, monitoring and

configuring aspects improvement. The solution can be found with

Software Defined Networking (SDN) principles in mind. Here is the

brief list [1]: differentiation between control and date planes [2], unified

switches usage to maintain data forwarding, utilization of controller – to

coordinate such switches in a centralized manner, stick to OpenFlow

protocol [3, 4]. OpenFlow specification provides open interface for

SDN-network components communication. The key components are

controller, switches and hosts.

Because of the fact that SDN technology is relatively new, it is

commonly relatively difficult to work with such network directly. The

solution can be in different emulators usage. The emulator typically is a

set of software and hardware means to represent SDN network within

virtual environment. SDN software is based on Linux platform. Here are

some examples of such emulators: Mininet [5, 6], EstiNet [7], OpenNet

[8], ns-3 [9]. Each of these solutions has its advantages and drawbacks.

The Mininet emulator though is being frequently considered to be an

exemplar to be compared to. That's why this solution will be used in our

laboratory works.

7

PCM2.1 Software defined networks basics

Mininet environment is devoted to be the mean for SDN-network

emulation, particularly by creating virtual hosts, switches, controllers

and connections between these components. Named components and

connections between them form the topology of network.

The architecture of SDN is given in Fig. 1 [10].

Fig. 1 – Layered architecture of SDN

Mininet environment provides the means to conduct the

development, investigation, testing and software configuring of SDN

systems, etc.

Mininet provides in particular the following abilities:

– can be used as testbed for SDN applications development;

– brings to the table the ability of different developers to jointly

work on network topology;

– includes the means of complex topology testing;

– provides specialized Application Programming Interface (API),

oriented on Python programming language usage;

Comparing to typical approaches to virtualization, Mininet provides

the following advantages:

– easiness of installation;

– quick boot time;

8

PCM2.1 Software defined networks basics

– easiness of system reconfiguration.

As a drawback the difficulties during the work with graphical

environment of Mininet on Windows platform and also the limitation of

network configuration by hardware resources available for virtual

machine can be pointed out [6].

The tasks to be accomplished during the laboratory work:

– Mininet Linux-environment installation on Windows platform by

way of VirtualBox usage;

– virtual machine network interfaces configuration;

– get in touch with basic console commands of Mininet emulator,

particularly to create the networks with different topologies.

The presentation of accomplished tasks has to be conducted by one

of two ways:

– one-by-one;

– after all the tasks have been accomplished.

Obtained results have to be properly represented in the report to be

defended.

1.2. Example of work execution

Step 1. Installation of Mininet environment.

To install Mininet emulator the following software has to be used:

– VirtualBox-4.3.10 has been chosen to be a tool for software

virtualization. File VirtualBox-4.3.10-93012-Win.exe is intended to be

installed on 32-bit Windows-platform;

– mininet-2.2.1-150420-ubuntu-14.04-server-i386.zip archive has

been chosen as Mininet emulator build. This archive has to be unpacked.

It can be seen from file name that the content of archive is the emulation

of 32-bit ubuntu-14.04-server Linux environment.

After installation of VirtualBox-4.3.10 tool the content of archive –

mininet-vm-i386.vmdk file – then has to be used as a hard drive of

virtual system to be created.

The snapshot of successfully created virtual machine is given in

Fig. 2.

It has to be noted that for the needs of virtual machine it has to be

allocated not less than 512 MB of random access memory.

9

PCM2.1 Software defined networks basics

Fig. 2 – The information about virtual machine configuration

Step 2. Configuration of network interfaces.

To configure network interfaces of virtual machine the option

"Settings" has to be chosen first, then "Adapter 1" and "Adapter 2"

configurations have to be accessed via "Network" option (Fig. 3, Fig. 4).

Fig. 3 – "Adapter 1" network configuration

10

PCM2.1 Software defined networks basics

Fig. 4 – "Adapter 2" network configuration

In order to create your own information model, you first need to

create a project in which you will work in the future.

Step 3. Mininet usage basics.

Launch virtual machine by pushing the "Launch" button.

After a while there will be proposed to enter the login and password

in console:

– in the mininet-vm login: field the mininet login has to be entered;

– in the password: field the mininet password has to be entered.

As confirmation of success the following line is going to appear:

mininet@mininet-vm:~$

1. View the information about network interfaces configuration.

For this purpose the following command has to be executed:

> sudo ifconfig

As a result, we can check, for instance, the IP-address of eth0

interface. It's going to be 10.0.2.15 or something like that.

2. Create network topology with minimal configuration – single

controller (c0), single switch (s1) and pair of hosts (h1, h2):

> sudo mn

After command execution the information about newly created

11

PCM2.1 Software defined networks basics

network with minimal topology will be given, and then the Mininet

console will be provided.

3. View the information about Mininet commands:

> help

4. View the information about all network nodes (there are should

be four nodes in total – controller (c0), switch (s1) and pair of hosts (h1,

h2)):

> nodes

5. Check the connections between nodes:

> links

6. Get the information about the IP-address and corresponding

subnetwork mask for a particular interface of certain host. For instance,

for eth0 interface of h1 host, the command will be as follows:

> h1 ip addr show | grep eth0

7. Test the throughput of communication channel between the

specified hosts. For instance, with respect to h0 and h1 hosts, the

command should be as follows:

> iperf h1 h2

It takes a while to accomplish the command. Each new command

execution will provide slightly different result.

8. View the information about nodes' interfaces:

> net

9. View the information about nodes configuration:

> dump

12

PCM2.1 Software defined networks basics

10. View the information about network interfaces of specified

node. For instance, for h1 node the following command should be

executed:

> h1 ifconfig -a

11. Check the information about the processes executed on nodes.

For instance, for s1 node the following command should be executed:

> s1 ps -a

12. Check the connections between hosts.

Between specified hosts:

> h1 ping -c 1 h2

Between all pairs of hosts:

> pingall

13. Launch web server and appropriate client on h1 and h2 hosts

respectively:

> h1 python -m SimpleHTTPServer 80 &

> h2 wget -O - h1

As a result of command execution, the HTML-code of web-page,

obtained by client, will be shown in the console.

14. Finalize the functioning of web server:

> h1 kill %python

15. Exit from Mininet console environment back to Linux console:

> exit

16. Clear topology-related data:

> sudo mn -c

13

PCM2.1 Software defined networks basics

As a result, all topology-related configuration data will be removed.

1.3. Tasks for individual execution

1. Create Software-defined network with specified parameters.

Solve the task with respect to a given variant. The topology should

be created with specified bandwidth and delay parameters.

Variant 1. Throughput – 10 Mb/s; communication delay: 20 ms:

> sudo mn --link tc,bw=10,delay=20ms

Variant 2. Throughput – 100 Mb/s; communication delay: 40 ms:

> sudo mn --link tc,bw=100,delay=40ms

For each variant the following should be done:

– measure the bandwidth of communication channel between hosts

5 times. For this purpose, the iperf command should be used. The

average should be placed to report;

– find the minimal value of rtt (round trip time) parameter with ping

command.

Remarks:

– rtt parameter encompass the time, spent on package transfer from

source host to destination host, plus the time on package retrieval

notification;

– for each variant, the student should be able to explain the obtained

results, e.g., why measured values of bandwidth are lower than specified

value of bw parameter, minimal value of rtt parameter is about 4 times

above the specified delay value.

2. Create the network with linear topology, encompassing 3 hosts:

> sudo mn --test pingall --topo single,3

3. Redo step 3 with respect to newly created topology.

4. Create linear topology with four switches and four hosts:

14

PCM2.1 Software defined networks basics

> sudo mn --test pingall --topo linear,4

This topology will include seven connections.

5. Create a tree-topology network with minimal configuration (one

controller, one switch and pair of hosts) and test it with pingall

command:

> sudo mn --topo tree,depth=1,fanout=2 --test

pingall

The --topo tree parameter sets tree topology itself. The depth

attribute sets the amount of switch layers (one layer in our case,

represented with single element (top) of switches tree): on the potential

second layer there will be a pair of switches, on the third – four, and so

on. The fanout attribute defines the number of connections to each

switch. In our case fanout=2. This means that, taking into consideration

that depth=1 (there are no other layers with switches and there are no

other switches at all), both connections are the direct connections to

hosts.

For instance, if we had depth=2, there would be one switch from the

first layer connected to a pair of switches from the second layer, and

those switches from the second layer would be directly connected to a

pair of hosts each. That means that there would be three switches and

four hosts in total.

The --test pingall parameter means that, after creation of network

with specified topology, each host should ping all other hosts to test

network consistency.

The procedure of such network creation and testing is a time

consuming process which will take place about 5 sec and will be shown

in console log.

6. Experiment on networks creation and testing with different values

of depth and fanout parameters.

1.4. Report content

The report should contain:

15

PCM2.1 Software defined networks basics

– title page with the name of the laboratory work;

– aim of the work; problem statement according to the task;

– work progress and the results of tasks execution;

– analysis of the results and conclusions;

– brief answers to the control questions.

1.5. Control questions:

1. Software Defined Networking. The aim, advantages and

drawbacks.

2. Give the definition of 'emulation' notion. Name the examples of

SDN emulators.

3. Mininet emulator. Usage and peculiarities.

4. Mininet installation and configuration. Brief description of steps

performed.

5. Stages of SDN network with minimal topology creation (by

default) – one switch and pair of hosts.

6. Commands to communicate with hosts and switches.

7. Commands to check connections between hosts.

8. Commands to launch web server and appropriate client.

9. Commands to set the delays on communicational channels.

10. Commands to change network configuration.

11. The use of depth and fanout parameters during the creation of

network with tree topology. Characterize the impact of these parameters

values on total number of network nodes.

1.6. Recommended literature:

1. N. Feamster, J. Rexford, and E. Zegura, “The road to SDN: an

intellectual history of programmable networks,” ACM SIGCOMM

Computer Communication Review, vol. 44, no. 2, pp. 87–98, 2014.

2. T. D. Nadeau and K. Gray, SDN: Software Defined Networks.

Sebastopol, CA : O’Reilly Media, 2013, 384 p.

3. OpenFlow Switch Specification, March 26, 2015 [Online].

Available: https://www.opennetworking.org/wp-content/uploads/2014/

10/openflow-switch-v1.5.1.pdf. [Accessed: 8 Jun. 2019].

4. P. Goransson, C. Black, and T. Culver, Software Defined

Networks: A Comprehensive Approach, 2nd ed. Waltham, MA: Elsevier,

2016, 436 p.

5. Mininet: An Instant Virtual Network on your Laptop (or other PC)

[Online]. Available: http://mininet.org. [Accessed: 8 Jun. 2019].

16

PCM2.1 Software defined networks basics

6. F. Keti and S. Askar, “Emulation of Software Defined Networks

Using Mininet in Different Simulation Environments,” in 2015 6th

International Conference on Intelligent Systems, Modelling and

Simulation, Kuala Lumpur, Malaysia, 9-12 February 2015, pp. 205-210.

7. S-Y. Wang, “Comparison of SDN OpenFlow network simulator

and emulators: EstiNet vs. Mininet,” in 2014 IEEE Symposium on

Computers and Communication, Funchal, Portugal, 23-26 Jun. 2014.

8. M-C. Chan et al., “A simulator for software-defined wireless local

area network,” in 2014 IEEE Wireless Communications and Networking

Conference, Istanbul, Turkey, 6-9 April 2014.

9. J. Ivey, H. Yang, C. Zhang and G. Riley, “Comparing a Scalable

SDN Simulation Framework Built on ns-3 and DCE with Existing SDN

Simulators and Emulators,” in 2016 annual ACM Conference on SIGSIM

Principles of Advanced Discrete Simulation, Banff, Alberta, Canada, 15-

18 May 2016, pp. 153-164.

10. F. Hu, Network Innovation through OpenFlow and SDN:

Principles and Design. Boca Raton, FL : CRC Press, 2014, 520 p.

17

PCM2.2. SDN programming and simulation of SDN composing, configuring and scaling

PCM2.2. SDN programming and simulation of SDN composing,

configuring and scaling

Assoc. Prof., Dr. V.V. Shkarupylo, Assoc. Prof., Dr.

R.K. Kudermetov, MSc student D.S. Mazur (ZNTU)

Laboratory work 1

WORKING IN MINIEDIT GRAPHICAL ENVIRONMENT

Goal: obtain the skills of MiniEdit graphical environment of

Mininet emulator usage. Get familiar with Software defined network

topology graphical constructor, network hosts configuring, network

topology testing.

Training participants: lecturers, scientists, technical staff, students

and post-graduate students of the department (faculty, institute) of the

university; developers, engineers, trainees.

1.1. Theoretical information
To foster the convenience of Mininet environment usage, the

MiniEdit graphical interface is taking place.

To get started with it, the following toolset is required:

– VirtualBox software – the 4.3.10-93012-Win.exe built;

– the deployed Mininet virtual machine – the content of 2.2.1-

150420-ubuntu-14.04-server-i386.zip archive should be used as a hard

drive of virtual machine;

– PuTTY utility – the putty.exe executable – openly accessible client

software with different protocols support, Telnet and SSH (Secure Shell)

in particular. SSH – application layer network protocol that allows to

perform remote control of operating system. In contrast with Telnet, all

the transmitted data is encrypted;

– Xming Server – the xming-x-server-6.9.0.38.exe built – the

implementation of X Window System to provide standard instruments

and protocols to build graphical interface for user. This server will be

used in our work in order to compensate the absence of graphical

interface in virtual machine the Mininet environment is installed in. It

will provide the opportunity to visualize MiniEdit interface of Mininet

that is implemented in Linux-environment of virtual machine within

18

PCM2.2. SDN programming and simulation of SDN composing, configuring and scaling

Windows-environment [1].

First and second tools mentioned have already been covered in

previous work.

Current work is all about the following steps:

– Xming Server installation – to work with MiniEdit graphical

interface of Mininet in Windows-environment;

– Mininet environment launching and configuration;

– PuTTY SSH-client set-up – to connect to virtual machine's

Mininet Linux-environment in encrypted manner;

– connect to virtual machine's Mininet Linux-environment via

PuTTY interface.

1.2. Example of work execution

Step 1. Install Xming Server.

Perform the installation of Xming Server on E logical drive.

During this, the “Full installation” option should be chosen, the

checkbox in front of “Normal PuTTY Link SSH client” position should

also be set up.

As a result of successful installation, Xming Server will be launched

automatically (Fig. 1).

Fig. 1 – An icon indicating that Xming Server has been launched

To launch Xming Server manually, the XLaunch.exe utility has to

be used. The utility is located in Xming installation directory.

Step 2. Configure Mininet virtual environment.

Launch Mininet emulator via VirtualBox. Enter login and password

(mininet, mininet) – as it was for previous work.

Then the following substeps should be performed:

19

PCM2.2. SDN programming and simulation of SDN composing, configuring and scaling

– (1-st substep) – try to launch MiniEdit interface directly in

Mininet virtual environment by executing the following console

command:

> sudo python ./mininet/examples/miniedit.py

As a result, the error message will appear: “no display name and no

$DISPLAY environment variable”. To get rid of it, the succeeding steps

should be done;

– (2-nd substep) – check the configuration of network interfaces:

> ifconfig -a

As a result of command execution, the IP-address of eth1 interface

should be remembered – it should be like 192.168.56.101. This address

will be used further to externally connect to Mininet virtual Linux-

environment from Windows-enfvironment by way of PuTTY client

usage.

– (3-rd step) – manually configure eth1 network interface as DHCP-

client:

> sudo dhclient eth1

Step 3. Configure PuTTY SSH-client.

To make it possible for PuTTY SSH-client to get access to Xming

Server launched, the following steps should be accomplished:

– mark with a checkbox the “Enable X11 forwarding” option in

“Connection -> SSH -> X11” category of PuTTY settings (Fig. 2);

– connect to Mininet virtual Linux-environment in “Session”

category, entering previously remembered 192.168.56.101 IP-address.

Then press “Open” to open the session.

Notice: connection port number should be left by default (22). As a

connection type, the “SSH” option should be marked.

20

PCM2.2. SDN programming and simulation of SDN composing, configuring and scaling

Fig. 2 – SSH-client configuration

Step 4. Connect to Mininet-console via PuTTY-client.

The following steps should be done:

– in opened PuTTY-console the login and password for Mininet

(mininet, mininet) need to be entered;

– set up SSH-connection by assigning eth1 interface IP-address:

> ssh –Y mininet@192.168.56.101

– enter the password upon request – mininet;

– perform 1-st substep of step 2 again by entering the appropriate

command via PuTTY-console.

As a result of rightly accomplished steps, the graphical MiniEdit

environment should appear in a separate window (Fig. 3). It's possible

due to Xming Server functioning.

The main advantage from Xming Server usage is that there is no

need to utilize the additional libraries, comparing to Cygwin server [2],

when working in Windows-environment.

21

PCM2.2. SDN programming and simulation of SDN composing, configuring and scaling

Fig. 3 – MiniEdit workspace

Step 5. Create SDN-network with minimal topology in MiniEdit

graphical environment.

The network to be created is depicted in Fig. 4.

Fig. 4 – Network representation in MiniEdit workspace

Each of the nodes can be configured appropriately (by changing the

name, setting IP-address, etc.) by pressing with right mouse button on

Properties option. For instance, in case of c0 node, the properties set will

be as given in Fig. 5.

In Fig. 21.5, port 6633 is set by default.

In case of many controllers, their port numbers should be different.

For instance, if we have a pair of controllers, port numbers can be set as

6633 and 6634.

22

PCM2.2. SDN programming and simulation of SDN composing, configuring and scaling

Fig. 5 – Controller configuration

To check and set up network preferences in MiniEdit environment,

the option “Edit -> Preferences” can be used (Fig. 6) [3].

Fig. 6 – Network preferences

In Fig. 6, it can be seen that 1.0 version of OpenFlow protocol is

being used by default. It's a typical picture for current level of SDN

networks implementation. These preferences are legit only for created

topology (Fig. 4).

Step 6. Save created topology in topo1.mn file by the default

23

PCM2.2. SDN programming and simulation of SDN composing, configuring and scaling

address /home/mininet (the topology file should necessarily have the

*.mn extension). Then created topology can be loaded again in MiniEdit

environment.

To save the topology, press “File -> Save”, to load – “File ->

Open”.

Step 7. Checking the created topology.

1. Choose “Edit -> Preferences” on the panel of instruments. Set

the flag in front of “Start CLI”. This will allow work with command line

during topology checking by way of simulation.

2. Assign IP-addresses to network nodes.

The default subnetwork mask (in “Edit -> Preferences” section) is

10.0.0.0/8.

3. Check the connection between hosts by launching the simulation

process: “Run -> Run”. By opening the terminal of h1 host (press the

right mouse button -> “Terminal”), execute the ping command, assigning

the IP-address of node:

> ping 10.0.0.4

Notice: before closing the terminal, enter the exit command.

4) Acknowledge that simulation is running: “Run -> Show OVS

Summary”.

Step 8. Experiment with created network.

1. While the simulation is running, open the terminal of h1 host and

execute the following command:

> wireshark &

This will launch the wireshark utility (traffic analyzer) on the

specified host.

2. In the main window – in Capture field (in the bottom left) – mark

out the h1-eth0 interface and press the Start control element. This will

allow to associate the monitoring software with eth0 interface of h1 host.

3. In the terminal of h1 host once again execute the ping command:

24

PCM2.2. SDN programming and simulation of SDN composing, configuring and scaling

> ping 10.0.0.4

As a result of command execution, in the work area of wireshark

software, the information about the packages transmitted through the h1-

eth0 interface will be shown.

1.3. Tasks for individual execution

1. Create SDN-network with tree-like topology. Choose

configuration data with respect to the variant.

Notice:

– variant should be chosen with respect to the list number of the

student. The odd numbers are associated with the first variant, the even

ones – with the second variant.

Variant 1. The network must encompass 2 controllers, 7 switches

and 8 hosts. The network should be configured with respect to the

recommendations given below.

Variant 2. The network must encompass 3 controllers, 8 switches

and 10 hosts. The network should be configured with respect to the

recommendations given below.

Recommendations to network configuration:

– assign the unique port numbers to the controllers;

– in “Edit -> Preferences” section of instruments panel, set the

“Start CLI” flag. This will allow use the command line;

– save the created network in “*.mn” file: “File -> Save”;

– save corresponding Python-script in “*.py” file: “File -> Export

Level 2 Script”.

Notice:

– before stopping the simulation process, the exit command should

be entered first. After that, the “Stop” control element on the control

panel should be pressed.

2. Execute steps 7 and 8 with respect to the network created within

the previous task.

25

PCM2.2. SDN programming and simulation of SDN composing, configuring and scaling

1.4. Report content

The report should contain:

– title page with the name of the laboratory work;

– aim of the work; problem statement according to the task;

– work progress and the results of tasks execution;

– analysis of the results and conclusions;

– brief answers to the control questions.

1.5. Control questions:

1. Sequence of steps to get to work in graphical MiniEdit

environment on Windows platform.

2. The use of PuTTY utility.

3. The use of Xming Server.

4. The advantages of Xming Server usage.

5. Describe advantages and disadvantages of command line and/or

graphical MiniEdit environment usage for the purpose of SDN-network

with specified topology creation.

6. Describe the use of wireshark utility.

7. Describe the facilities for network testing in graphical MiniEdit

environment.

8. The use of Show OVS Summary command.

9. With respect to tree-like topology of SDN-network, describe the

dependencies between the numbers of controllers, switches and hosts.

10. Describe the effect of subnetwork mask format on the potential

number of hosts.

1.6. Recommended literature:

1. Xming X Server for Windows [Online]. Available:

https://sourceforge.net/projects/xming/. [Accessed: 8 Jun. 2019].

2. Cygwin [Online]. Available: http://cygwin.com. [Accessed: 8

Jun. 2019].

3. How to use MiniEdit, Mininet’s graphical user interface [Online].

Available: http://www.brianlinkletter.com/how-to-use-miniedit-

mininets-graphical-user-interface/. [Accessed: 8 Jun. 2019].

26

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT

PCM2.3. Algorithms and applications for utilization of SDN

technology to IoT

Prof., Dr. Sc. I.S. Skarga-Bandurova, PhD student

A.Yu. Velykzhanin, Dr. L.O. Shumova (V. Dahl EUNU)

Laboratory work 1

APPLICATION OF ONOS SDN CONTROLLER PLATFORM

FOR IOT NETWORKS MANAGEMENT

Goal and objectives: This laboratory work is an introduction to the

managing a software-defined networks (SDN). We’ll discover the open

network operating system (ONOS); set up a network OS, and practice in

working with ONOS.

Learning objectives:

– to study the principles of the ONOS;

– to study the possibilities of managing a software-defined network

using ONOS.

Practical tasks:

– acquire practical skills in working with ONOS.

Exploring tasks:

– discover ONOS communication tools to message exchange in the

network;

– investigate how to perform basic management operations with

ONOS.

Setting up.

In preparation for laboratory work it is necessary:

– to clear the goals and mission of the research;

– to study theoretical material contained in this manual, and in [1]-

[3];

– to familiarize oneself with the main procedures and specify the

exploration program according to defined task.

Recommended software and resources: ONOS, Mininet,

OracleVM VirtualBOX, SDNHub.

27

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT

1.1. Synopsis

In this laboratory work you will learn basic software-defined

networking (SDN) concepts using the ONOS SDN controller, ONOS

components, and the Mininet network simulator. Specifically you will

use ONOS SDN controller. While you explored this tool using the Linux

operating system, the same tool is available for Windows operating

systems.

1.2. Brief theoretical information

IoT applications are fundamentally different from traditional ones.

IoT intends to connect billions of devices from different manufacturers

that can be deployed in an uncoordinated way. These problems can be

solved by implementing a high level of automation of delivery and

operation of IoT applications. IoT is the area where SDN can be

extremely useful. Below are some issues in IoT and how SDN

application can help with this:

– mass device connectivity: Adding routing/forwarding information

related to the IoT devices will require the automatic detection of these

devices and mechanisms for dynamically calculating the route over the

network. The SDN controller can be used to interact with switches in the

forwarding planes to configure traffic flows over the network for these

devices.

– fast network changes: IoT devices are limited in terms of power

consumption and processor utilization. They can often be removed from

the network due to low battery or processor overload. They also work on

a variety of wireless technologies, which can have a significant failure

rate. IoT network infrastructure may need to handle fast changes, which

requires changing routing/flow information in the network elements. The

SDN can optimally handle such scenarios with dynamic topology

maintenance.

– network scalability processing. Recent applications and services

are developed based on the principles of NFV, when network objects are

created or completed on the fly. In IoT, this can mean pruning and

grafting IoT controllers (gateways) as needed. SDN can be used to

intelligently locate these controllers and update the streams of connected

devices accordingly.

– low power sensors: IoT sensors have the very low processing

power and need frequent battery replacement. Therefore, they cannot

28

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT

implement complex routing or network management protocols.

One of the most common SDN controllers for this purpose is ONOS.

ONOS is an SDN network operating system with powerful architectural

features such as high availability, scalability, modularity, and complete

separation of protocol-independent and protocol-specific device and

channel representations.

The ONOS (Open Network Operating System) project is an open

source community supported by The Linux Foundation. The aim of the

project is to create SDN operating system for communications service

providers designed to provide scalability, high performance and high

availability [1].

In this work we will develop and test an IoT network using ONOS

SDN Controller with the Mininet Network Emulator. The example of

network is shown in Fig. 1.

OpenFlow

Switch

OpenFlow

Switch

OpenFlow

SwitchS1

S2

S3

h1

h2

h3ONOS

Controller

Host Host

Host

Fig. 1 – An example the network under the test

1.3. Execution order and discovery questions

Step 1. Install OracleVM VirtualBOX.

Use link [4] to install OracleVM.

Step 2. Deploy the SDNHub image [5].

29

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT

Step 3. Create a network of switches and hosts.

1. Install ONOS [6] and Mininet Network Emulator [7].

In this laboratory work we assume you have already set up a Mininet

VM in VirtualBox.

Start VirtualBox and then start the VM.

We will use the Mininet graphical user interface, to set up an

emulated network made up of OpenFlow switches and Linux hosts. To

start Mininet, run the following command on a terminal window

connected to the Mininet VM:

> mininet@mininet-vm:~$ sudo

~/mininet/examples/miniedit.py

2. Double-click on the downloaded ONOS tutorial OVA file will

open virtual box with an import dialog. Allocate 2-3 CPUs and 4-8GB of

RAM for the VM.

3. Run the ONOS. Since we use a ready-made image of the system,

almost all the necessary packages have been already installed but you

have to conFig. them.

4. Run the command prompt. Then set up a network operating

system (Fig. 2).

Fig. 2 – Setting the environment variables for ONOS and karaf execution

Optionally, you can compile the controller using the commands:

> mvn clean install -nsu -DskipIT -DskipTests

In the new terminal window, write a command:

30

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT

> sudo mn --custom lab1.py --topo mytopo –mac –

controller remote

Set up a network using standard Mininet topology commands. As an

alternative for standard command you can use MiniEdit to create the

network topology. MiniEdit provides a visual representation of the

network. However, while MiniEdit is a good tool for creating topologies

for the Mininet network simulator, in this lab we create a topology via

standard Mininet commands.

> sudo mn --custom lab1.py --topo mytopo --mac --

controller=remote

Step 4. Discover ONOS Basics.

Before start ONOS SDN controller, we need to determine which

components we want to run when we start the controller.

1. Start ONOS controller with one of the following commands

command:

> ok clean

> karaf clean

Fig. 3 – Start ONOS controller window

2. Look through the main commands. A full list of commands is

31

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT

available at [8], or use basic ONOS tutorial for [9].

2.1. Links. Similarly, the links command is used to list the links

detected by ONOS.

At the ONOS prompt run the command (Fig. 4).

Fig. 4 – List of links detected by ONOS

With the help of the "devices" command, find out the list of all

infrastructure devices (Fig. 5).

32

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT

Fig. 5 – The list of infrastructure devices

With the help of the "links" command, we can find out the list of all

infrastructure links (Fig. 6).

Fig. 6 – The list of infrastructure links

2.2. Flows list all currently-known flows.

Now all switches have 5 routing rules. Here, deviceID is a device

identifier (switch) and id is a routing rule (Fig. 7).

2.3. Run the Mininet pingall command.

This command runs ping tests between each host in the emulated

network. This generates traffic to the controller every time a switch

receives a packet that has a destination MAC address that is not already

in its flow table.

33

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT

Fig. 7 – The list of flows

From the host h3 send the command "ping" to the host h1 in the

Mininet window (Fig. 8).

To see the contents of the flow tables on all switches, execute the

Mininet command:

mininet> dpctl dump-flows

To check ARP tables on each host, execute the Mininet "arp"

command. For instance, to show the ARP table for host h1, enter the

following command:

mininet> h1 arp

To clear all flow tables on all switches, enter the Mininet command:

mininet> dpctl del-flows

34

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT

Fig. 8 – Mininet "ping" command

Analyze how the rules change. On switches 1 and 3, two new

routing rules should appear (Fig. 9).

Fig. 9 – The list of routing rules

Step 5. Build a network in Mininet in accordance with your personal

task and discover basic network management operations with ONOS.

35

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT

An example below creates a 3-switch topology connected in a loop.

A host is connected to each switch.

#!/usr/bin/python

from mininet.topo import Topo

class triangleTopo(Topo):

 "Create a custom network and add nodes to it."

 def __init__(self):

#setLogLevel('info')

Initialize topology

Topo.__init__(self)

#info('*** Adding hosts\n')

h1 = self.addHost('h1')

h2 = self.addHost('h2')

h3 = self.addHost('h3')

 #info('*** Adding switches\n')

nodeA = self.addSwitch('s1')

nodeB = self.addSwitch('s2')

nodeC = self.addSwitch('s3')

#info('*** Creating links\n')

self.addLink(nodeA, nodeB)

self.addLink(nodeB, nodeC)

self.addLink(nodeC, nodeA)

self.addLink(h1, nodeA)

self.addLink(h2, nodeB)

self.addLink(h3, nodeC)

topos = {'mytopo': (lambda: triangleTopo()) }

Explore OpenFlow control messages and how flow tables are

updated on the switches.

Explore how the other stock ONOS components work individually

and in combination with other components or applications.

1. ONOS has a web-based GUI. To launch it you should click on the

provided ONOS GUI icon (Fig. 10).

36

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT

Fig. 10 – ONOS GUI icon

2. Login as user onos with password rocks;

3. Open the browser and go to the following link:

http://localhost:8181/onos/ui/index.html

4. Click “h”. We will see our hosts. As you will see, host two are

invisible to us due to we did not ping it.

5. Ping the h2 host in the Mininet window (Fig. 11).

> h1 ping –c 3 h2

http://localhost:8181/onos/ui/index.html

37

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT

Fig. 11 – Simple tree with three switches and three hosts

For quick help press “\”.

6. On ONOS GUI press “F” and click to “s1” for seeing traffic flow

(yellow line in Fig. 12).

38

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT

Fig. 12 – Traffic flow

In this lab, the ONOS controller is running on the same virtual

machine that all the emulated switches and hosts created by Mininet are

running on.

7. Run “h1 ping h3”.

Ctrl-c is an interrupt hotkey.

On ONOS command line type “stop onos-app-fwd”.

As it can be seen from Fig. 13, the packet forwarding has been

stopped.

39

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT

Fig. 13 – Stopping the packet forwarding

8. Restore packet flow (Fig. 14).

Fig. 14 – Command to restore packet flow

The command “logout” is used for ONOS stopping.

40

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT

1.4. Requirements to the content of the report

Report should contain 5 sections: Introduction (I), Methods (M),

Results (R), and Discussion (D)

– (I): background / theory, purpose and discovery questions;

– (M): complete description of the software, and procedures which

was followed in the experiment, experiment overview, Fig. / scheme of

testing environment, procedures;

– (R): narrate (like a story), tables, indicate final results;

– (D): answers on discovery questions, explanation of changes in

traffic flow, conclusion / summary.

1.5. Control questions:

1. For what purpose ONOS is used?

2. List main command options available for ONOS.

3. How the rules changed when the host "h3" send the command

"ping" to the host "h1"? Why?

4. What changes did you observe at your virtual network?

5. How to build a network in mininet?

6. What are the network management operations with ONOS?

1.6. Recommended literature:

1. Onosprojectorg. 2018. [Online]. Available:

http://onosproject.org/wp-content/uploads/2014/11/Whitepaper-ONOS-

final.pdf. [Accessed: 4 Feb. 2018].

2. “Basic ONOS Tutorial” Wikionosprojectorg. 2018. [Online].

Available:

https://wiki.onosproject.org/display/ONOS/Basic+ONOS+Tutorial.

[Accessed: 4 Feb. 2018].

3. Anadiotis, A.-C. G., Galluccio, L., Milardo, S., Morabito, G. and

Palazzo, S., 2015, Towards a software-defined Network Operating

System for the IoT. 2015 IEEE 2nd World Forum on Internet of Things

(WF-IoT). 2015. doi 10.1109/wf-iot.2015.7389118. IEEE.

4. Oracle VM VirtualBox. 2018. [Online]. Available:

https://www.oracle.com/technetwork/server-

storage/virtualbox/overview/index.html [Accessed: 4 Feb. 2018].

http://onosproject.org/wp-content/uploads/2014/11/Whitepaper-ONOS-final.pdf
http://onosproject.org/wp-content/uploads/2014/11/Whitepaper-ONOS-final.pdf
https://wiki.onosproject.org/display/ONOS/Basic+ONOS+Tutorial

41

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT

5. SDN Tutorial. 2018. [Online]. Available:

http://yuba.stanford.edu/~srini/tutorial/SDN_tutorial_VM_32bit.ova.

[Accessed: 4 Feb. 2018].

6. ONOS is the only open source controller providing: [Online].

Available: https://onosproject.org/. [Accessed: 4 Feb. 2018].

7. Mininet: An Instant Virtual Network on your Laptop (or other

PC) [Online]. Available: http://mininet.org/. [Accessed: 4 Feb. 2018].

8. Appendix A: CLI commands [Online]. Available:

https://wiki.onosproject.org/display/ONOS/Appendix+A+%3A+CLI+co

mmands. [Accessed: 4 Feb. 2018].

9. Basic ONOS Tutorial [Online]. Available:

https://wiki.onosproject.org/display/ONOS/Basic+ONOS+Tutorial.

[Accessed: 4 Feb. 2018].

42

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT

Laboratory work 2

QUALITY OF SERVICE IN SDN NETWORK SCENARIO USING

POX CONTROLLER

Goal and objectives: In this laboratory work we will focus on the

general principles of quality of services (QoS) in SDN with POX.

Learning objectives:

– study main principles of QoS in SDN;

– study the possibilities of managing SDN with POX controller.

Practical tasks:

– acquire practical skills of network traffic management in SDN;

– acquire practical skills of working with open Vswitch with POX

controller.

Exploring tasks:

– exploring the possibilities of Open vSwitch.

Setting up

In preparation for laboratory work it is necessary:

– to clear the goals and mission of the research;

– to study theoretical material contained in this manual, and drill

down to [1]-[6];

– to familiarize oneself with the main procedures and specify the

exploration program according to defined task.

Recommended software and resources:

– SDNHub

http://yuba.stanford.edu/~srini/tutorial/SDN_tutorial_VM_32bit.ova;

– OracleVM VirtualBOX:

https://www.oracle.com/technetwork/server-

storage/virtualbox/overview/index.html.

2.1. Synopsis

In this lab we will assess and analyze the Quality of Service of POX

Controller in SDN. Furthermore, we outline the potential challenges and

open problems that need to be addressed further for better and complete

QoS abilities in SDN/OpenFlow networks. Additional information about

http://yuba.stanford.edu/~srini/tutorial/SDN_tutorial_VM_32bit.ova
https://www.oracle.com/technetwork/server-storage/virtualbox/overview/index.html
https://www.oracle.com/technetwork/server-storage/virtualbox/overview/index.html

43

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT

available bandwidth measurement in SDN and simulation in SDN

network scenario using the POX Controller can be found in [7] and [8]

respectively.

2.2. Brief theoretical information

The one of essential features required of IoT networks is to ensure

high reliability and Quality of Services (QoS). QoS is typically defined

as an ability of a network to provide the required services for selected

network traffic. The primary goal of QoS is to provide priority with

respect to QoS parameters including but not limited to: bandwidth, delay,

jitter, and loss [6].

QoS metrics.

There are the following QoS metrics applicable for the SDN

analysis:

1. Network Throughput (NT).

NT is the number of data packets delivered from source to

destination per unit of time:

1

1
,

n
i

i i

b
NT

n t

 (1)

where bi denotes a total amount of data, ti is a time taken for

destination to get the final packet, n is total number of application traffic.

2. Packet Delivery Ratio (PDR).

PDR is a ratio of the number of packets received (NPR) by the

destination to the number of packets send (NPS) by the source:

.PR

PC

N
PDR

N
 (2)

3. Packet Loss (PL).

PL is the measure of number of packets dropped by nodes due to

various reasons.

PL = NPS – NPR. (22.3)

44

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT

4. Average end-to-end delay (EED).

EED is defined as average time taken by data packets to propagate

from source to destination across Ad hoc network.

EED = ∑ (arrived time – sent time). (4)

Performance tests.

1. Network сonnectivity test

Pingall stamen checks the connectivity among the created network.

Connectivity among the hosts ensures the data transfer is possible among

them. Wget feature of Linux has been used for sending files among the

reachable hosts. Fig. 15 depicts connectivity among the hosts depending

on the congestion state at the particular time. Frame 1 shows that h1 and

h3 has connectivity to all other hosts, whereas from h2 there is no

connectivity to h1and h4 has no connectivity to h1. Frame 2 shows that

h2 has no reachability to h3 and h3 has no reachability to h4.

*** Ping: testing ping reachability

h1 -> h2 h3 h4

h2 -> X h3 h4

h3 -> h1 h2 h4

h4 -> X h2 h3

*** Ping: testing ping reachability

Fig. 15 – Pingall reachability test

2. SDN available bandwidth measurement

Bandwidth utilization in a network serves as a key method for

measuring QoS of network. Available bandwidth is an important

component for both service provider and application perspective [7].

Fig. 16 shows the two bandwidth frames taken at different amount

of time. It measures the bandwidth between h1 and h4 at different

available capacity links.

Testing bandwidth between h1 and h4

*** Iperf: testing TCP bandwidth between h1 and h4

*** Results: [‘3.03 Mbits/sec’ , ‘3.15 Mbits/sec’]

testing bandwidth between h1 and h4

45

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT

*** Iperf: testing TCP bandwidth between h1 and h4

*** Results: [‘3.52 Mbits/sec’ , ‘3.66 Mbits/sec’]

Fig. 16 – Available bandwidth measurement

3. Packet loss and delay measurement

Packet loss ratio and packet delay will benefit many users and

operators of network applications. Fig. 17 shows the example of packet

loss and delay in the SDN network.

*** Adding links:

(10.00Mbit 5ms delay 2% loss) (10.00Mbit 5ms delay 2% loss) (h1, s1)

(10.00Mbit 5ms delay 2% loss) (10.00Mbit 5ms delay 2% loss) (h2, s1)

(10.00Mbit 5ms delay 2% loss) (10.00Mbit 5ms delay 2% loss) (h3, s1)

(10.00Mbit 5ms delay 2% loss) (10.00Mbit 5ms delay 2% loss) (h4, s1)

Packet loss
*** Results: 16% dropped (10/12 received)

Fig. 17 – Packet loss and delay in the SDN network

2.3. Execution order and discovery questions

The simulation scenario consists of two OpenFlow switches (S1 and

S2) connected to the three hosts (h1, h2, h3) and to the POX controller as

depicted in Fig. 18.

46

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT

h1

Host

h2

h3

Host

Host

POX

 Controller

h3 Host

O
p

e
n
F

lo
w

S
w

it
c

h

S1

O
p

e
n
F

lo
w

S
w

it
c

h

S2S1-eth2

S
1

-e
th

4

Default queue, traffic from h3 to h4

For traffic from h1 to h4, max=4Mbps

For traffic from h2 to h4, max=1Mbps

q0

q1

q2

Output queues for s1-eth4

Fig. 18 – Example of network under the test

First, you need to install Linux to Oracle VM Virtual Box and

deploy SDNHub ova image as you did it in previous laboratory work.

Step 1. Configure openVswitch with POX controller.

To configure openVswitch in PC1 eth0.10 interface you can use the

following commands [6]:

1. Attach PC1 eth0.10 interface (IP 192.168.10.100) to the bridge

connection between openVswitch in PC1 and controller.

> sudo ovs-vsctl add-br br0

> sudo ovs-vsctl add-port br0 eth0.10

> sudo ifconfig br0 192.168.10.100 netmask

255.255.255.0

2. Attach OpenVswitch to the Controller which is in

192.168.100.30.

> ovs-vsctl set-controller br0

tcp:192.168.100.30:6633

47

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT

3. To remove openVswitch bridge, connection use the following

command.

> sudo ovs-vsctl del-br br-0

> sudo ovs-vsctl del-port br-0 eth0.10

4. To remove the Controller type, do the following.

> sudo ovs-vsctl del-controller br-0

5. To launch multiple controllers and Mininet on the same VM, run

Mininet Script given below.

> c1 = net.addController('c1',

controller=RemoteController, ip="127.0.0.2",

port=6633)

> c2 = net.addController('c2',

controller=RemoteController, ip="127.0.0.1",

port=6634)

6. Start POX controllers.

> ./pox.py --port=6633 MyScript.py

> ./pox.py --port=6634 MyScript.py

Step 2. Build the network from the Fig. 15.

> sudo mn --custom lab2.py --topo mytopo –mac

Step 3. Call command prompt h1 and h2.

> xterm h1 h2 h3 h4

48

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT

Fig. 19 – Creating the network

Step 4. In h4 windows, start Iperf servers at port 4000, 5000, 6000

respectively.

> iperf –s –p 4000&

iperf –s –p 5000&

iperf –s –p 6000

49

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT

Fig. 20 – Server listening

Step 5. Conduct different tests to check the performance of SDN

network. Besides the performance tests, you can use the following.

1. Node h1. Test the bandwidth between h1 and h4 (no other

background traffic)

> iperf –c 10.0.0.4 –p 4000

Fig. 21 – Test the bandwidth between h1 and h4

50

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT

2. Node h2. Test the bandwidth between h2 and h4 (no other

background traffic).

> iperf –c 10.0.0.4 –p 5000

Fig. 22 – Test the bandwidth between h2 t and h4

3. Test the bandwidth between h3 and h4 (no other background

traffic).

> iperf –c 10.0.0.4 –p 6000

Fig. 23 – Test the bandwidth between h3 and h4

The measured bandwidth will be around 7.91 Gbits/sec. They

depend from the emulation environment, such as CPU and working load.

Step 6. Restart Mininet.

51

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT

> sudo mn --custom lab2.py --topo mytopo –mac --

controller remote

Fig. 24 – Restart Mininet

Step 7. Put lab2_controller.py to home/ubuntu/pox/ext/.

Step 8. Start POX controller.

> cd pox

> ./pox.py lab2_controller

Fig. 25 – Start POX controller

52

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT

Step 9. Set up Open vSwitch for queues. Create a linux-htb QoS

record that points to a few queues and use it on eth4.

Step 10. Create three queues for s1-eth4, i.e. q0, q1, and q2 and to

set the rate for each queue using ovs-vsctl.

To do this, enter the following command (Fig. 26):

> sudo ovs-vsctl -- set Port s1-eth4 qos=@newqos -- --

id=@newqos create QoS type=linux-htb other-config:max-

rate=10000000 queues=0=@q0,1=@q1,2=@q2 -- --id=@q0

create Queue other-config:min-rate=1000000000 other-

config:max-rate=1000000000 -- --id=@q1 create Queue

other-config:min-rate=4000000 other-config:max-

rate=4000000 -- --id=@q2 create Queue other-

config:min-rate=100000 other-config:max-rate=1000000

Fig. 26 – Creating queries for s1-eth4

More detailed information about Open vSwitch is given here:

http://www.openvswitch.org/support/dist-docs/ovs-vsctl.8.txt.

Node h4.
> iperf –s –p 4000 &

iperf –s –p 5000 &

iperf –s –p 6000

Node h1.
> iperf –c 10.0.0.4 –p 4000

http://www.openvswitch.org/support/dist-docs/ovs-vsctl.8.txt

53

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT

Node h2.
> iperf –c 10.0.0.4 –p 5000

Node h3.
> iperf –c 10.0.0.4 –p 6000

As you can see (Fig. 27), the bandwidth between the hosts have

been changed. This is a result of performed operations.

Fig. 27 – New values of the bandwidth between the hosts

After executing all available performance tests, analyze the possible

changes and their causes.

2.4. Requirements for the content of the report

Report should contain 5 sections: Introduction (I), Methods (M),

Results (R), and Discussion (D)

– (I): background / theory, purpose and discovery questions

– (M): complete description of the software, and procedures which

was followed in the experiment, experiment overview, procedures

54

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT

– (R): narrate (like a story), code for your assignment, Fig. of attack

graph with marked the attacker path;

– (D): answers on discovery questions, explanation of results,

conclusion / summary.

2.5. Control questions:

1. What network performance metrics in SDN do you know?

2. How to set up Open vSwitch for queues?

3. What are the key tests for measuring QoS of network with POX?

4. How to check the performance of SDN network?

5. What parameters does measured bandwidth depend on?

6. How to perform network connectivity test?

7. How to obtain measure of connectivity among the hosts

depending on the congestion state at the particular time?

8. How does network architecture affect bandwidth between nodes?

9. What are the main causes of packet loss and delay measurement

in SDN?

10. How to overcome issues with packet loss and delay measurement

in SDN?

2.6. Recommended literature:

1. "Basic Configuration – Open vSwitch 2.12.90

documentation",Docs.openvswitch.org, 2019. [Online]. Available:

http://docs.openvswitch.org/en/latest/faq/configuration/. [Accessed: 13

Jun. 2019].

2. QoS on OpenFlow 1.0 with OVS 1.4.3 and POX inside Mininet,

2018. [Online]. Available: http://users.ecs.soton.ac.uk/drn/ofertie/ope

nflow_qos_mininet.pdf [Accessed: 12- Sep. 2018].

3. Open vSwitch 2018. [Online]. Available:

http://www.openvswitch.org/support/dist-docs/ovs-vsctl.8.txt [Accessed:

12 Sep. 2018].

4. "POX Controller Tutorial | SDN Hub", Sdnhub.org, 2019.

[Online]. Available: http://sdnhub.org/tutorials/pox/. [Accessed: 23 Jun.

2019].

5. "Configure openVswitch with POX

controller", Windysdn.blogspot.com, 2019. [Online]. Available:

http://windysdn.blogspot.com/2013/10/configure-openvswitch-with-

pox.html. [Accessed: 03 Jan. 2019].

http://users.ecs.soton.ac.uk/drn/ofertie/ope%20nflow_qos_mininet.pdf
http://users.ecs.soton.ac.uk/drn/ofertie/ope%20nflow_qos_mininet.pdf
http://www.openvswitch.org/support/dist-docs/ovs-vsctl.8.txt

55

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT

6. S. Midha, K. Tripathi, “Assessing the Quality of Service of POX

Controller in SDN,” International Journal of Computational Engineering

Research (IJCER), 2018, vol. 8, no. 8, pp. 21-25.

7. P. Megyesi, A. Botta, G. Aceto, A. Pescapè, S. Molnár,

"Available Bandwidth measurement in SDN", ACM 978-1-4503-3739-

7/16/04

8. L. R. Prete, A. Shinoda, C. Schweitzer and R. de Oliveira,

"Simulation in an SDN network scenario using the POX

Controller", 2014 IEEE Colombian Conference on Communications and

Computing (COLCOM), 2014. doi: 10.1109/colcomcon.2014.6860403.

56

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT.

Laboratory work 3

IOT DATA STREAMING OVER SDN

Goal and objectives: In this laboratory work, we explore the

behavior of a SDN when transmitting a video stream in unstable

conditions. Such network parameters as low latency, processing of

“volumetric” data, and minimal distortion of information packets are

important for transmitting a video stream.

Learning objectives:

– study the employing SDN to control video streaming applications;

– study the means used for real-time traffic transmission.

Practical tasks:

– acquire practical skills of working with SDN and video stream;

– acquire practical skills in analysis and improving video quality-of-

experience (QoE).

Exploring tasks:

– investigate behavior of a SDN when transmitting a video stream

in unstable conditions;

– explore the performance of the network with an increase in the

rate of packet loss information, increasing network latency.

Setting up.

In preparation for laboratory work it is necessary:

– clear the goals and mission of the research;

– study theoretical material contained in this manual, Chapter 23 of

the Multibook and in [1]-[3];

– familiarize oneself with the main procedures and specify the

exploration program according to defined task.

Recommended software and resources:

VLC player: https://www.videolan.org/index.ru.html;

Mininet: http://mininet.org/;

OracleVM VirtualBOX:

https://www.oracle.com/technetwork/server-

storage/virtualbox/overview/index.html;

SDNHub

https://www.videolan.org/index.ru.html
http://mininet.org/
https://www.oracle.com/technetwork/server-storage/virtualbox/overview/index.html
https://www.oracle.com/technetwork/server-storage/virtualbox/overview/index.html

57

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT.

http://yuba.stanford.edu/~srini/tutorial/SDN_tutorial_VM_32bit.ova.

3.1. Synopsis

In this lab, we will try to solve the problem of quality of video

stream transmissions via SDN. In order to improve video QoE over

SDN, we will (a) study various video QoE metrics; (b) assign the best

available delivery node based on provisioned network conditions; and (c)

dynamically change routing paths between wide area network (WAN)

routers.

3.2. Brief theoretical information

When we move IoT data to the cloud, managing the cloud resources

is considered as the main issue. The data-driven process can be done by

batch data processing using Hadoop. However, due to the emergence of

IoT technologies that generated tremendous streamed data, processing on

time is needed to obtain valuable information before the data become

valueless. For example, in the case when the streamed data comes from

health monitoring sensors or video streaming in surveillance systems to

enhance situation awareness. SDN has a potential solution to this issue.

For operators, the video QoE analytics can be used for identifying most

congested segments within the video delivery network to be upgraded

first, for debugging ongoing QoE-related issues in the field, and for

proactively preventing QoE-related complaints from content users.

When starting the network operation, a topology discovery process

is performed, and it allows the controller to select the most suitable path

for the transmission of the video streams. Once an OpenFlow-enabled

device connects to the SDN controller, it starts a handshaking process

that allows the controller to be aware of all forwarding devices in the

SDN data plane.

In the SDN controller, the topology data gathered is represented by

an undirected graph. The controller computes the routes among the

devices based on the information contained in this network

representation. As the topology of the network changes, the graph needs

to be updated to correspond to the new network topology. The controller

detects OpenFlow enabled devices that are joining or leaving the data

plane through the OpenFlow Channel.

In this lab, we will use an SDN-based architecture to collect

information about the quality of data streaming and analyzes it to

provide a more accurate estimate of end-user QoE.

http://yuba.stanford.edu/~srini/tutorial/SDN_tutorial_VM_32bit.ova

58

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT.

Measurements of video stream playback quality.

Measurements of video stream playback quality can be classified

into objective and subjective metrics [1]. Objective measurements can be

collected in the user video player. Subjective metrics like Mean Opinion

Score (MOS) are based on the user feedback. The video quality

assessment can also be used as a feedback to adjust network settings and

policy enforcements. By collecting and analyzing objective QoE

measurements, the MOS indicator can be predicted

QoE metrics.

There is a wide variety of video quality metrics and different flavors

of QoE optimization objectives. Some objective metrics to quantify the

QoE on the client side using video over HTTP could be find in [1], [3].

These metrics are:

1. Video playback start time: time taken by the player to start the

playout, from the moment the stream is requested.

2. Number of interruptions: when the playback is temporarily frozen

a video interruption is computed.

3. Total duration of interruptions: the sum of the duration of all

interruptions (Buffering Time) during video playout. The Initial

Buffering event in most cases is ignored.

3.3. Execution order and discovery questions

The simulation scenario consists of two hosts (h1 and h2) and one

switch in the current mininet environment (Fig. 28). The link between h1

and switch is set to be lossless. The loss rate for the link between h2 and

switch is set approx to 5%.

With some settings, the hosts in the mininet can call on the outside.

In this lab, h1 and h2 will run the VLC RTP sender program, and send

the video packets to the windows environment.

Note: You can change the loss parameter in this manner:

> net.addLink(h2, s1, cls=TCLink, bw=10,

delay='1ms', loss=5)

1. Obtain the initial data to perform individual tasks. An example of

assignment is represented in Fig. 28.

59

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT.

VLC RTP

sender

h1

Host

h2

Host

OpenFlow

Switch

Virtual

Ethernet

Switch

(VMNet0)

VLC RTP

sender

Link Loss Rate = 0

Link Loss Rate = 5%

mininet

e
th

0
Guest OS: Ubuntu

Host

Ethernet

adapter

Host OS: Windows
VLC RTP

receiver

Fig. 28 – Example of network under the test

2. Download video: https://sample-videos.com/index.php#sample-

mp4-video.

3. Install VLC players. For Ubuntu they can be installed using

following command:

> sudo apt-get install vlc

Fig. 29 – Install VLC players

4. Run a python scenario provided in Appendix D.

> sudo chmod +x lab3.py

> sudo ./lab3.py

https://sample-videos.com/index.php%23sample-mp4-video
https://sample-videos.com/index.php%23sample-mp4-video

60

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT.

Fig. 30 – Creating a network and running a python scenarios

5. Ping external Windows host.

> h1 ping –c 3 192.168.1.3

Fig. 31 – Ping the external hosts

61

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT.

6. Send ten ICMP packets from h2 and analyze how many of

packets will be lost (usually it is about 20%).

> h2 ping –c 10 192.168.1.3

Fig. 32 – Sending ICMP packets from h2

7. Run VLC media player on receiver machine (internal).

62

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT.

Fig. 33 – VLC player main window

8. Go to “Media” → Open Network Stream. Input

“rtp://you_receiver_ip_addr_:5004”. Click “Play”.

Fig. 34 – Opening network stream

9. In Mininet command line, open hosts 1 and 2.

> xterm h1 h2

63

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT.

Fig. 35 – Opening h1 and h2

10. Choose h1 terminal, open VLC player. In command line: vlc-

wrapper.

> iperf –c 10.0.0.4 –p 6000

Fig. 36 – Running vlc with the default interface

64

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT.

11. Add the path to the video and click on Stream.

Fig. 37 – Adding the path to the video

12. Click “Next” to stream media.

13. Click “Add”.

Fig. 38 – Selecting format of the video

14. Choose RTP/TS and specify the path of the recipient. Click

65

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT.

“Next”.

Fig. 39 – Output address

15. Uncheck with “Activate Transcoding”. Click “Next”.

Fig. 40 – Activate transcoding

16. Click “Stream”. Move on “Receiver Host”.

66

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT.

Fig. 41 – Option setup

17. As a result, a video stream from h1 host should appear (Fig. 41).

Fig. 42 – Result of video streaming from h1

67

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT.

18. Then stop stream on h1 and start streaming from h2. As a result,

the broken video may appear (see Fig. 43).

Fig. 43 – Result of streaming from h2

Do all packages reach the recipient from h2? Why?

19. To answer the question how does the loss rate of packages affect

the quality of the stream conduct experiments with different percent

packet loss: 1% - 10% - 25% - 50% (4 options). Conduct experiments

with different quality.

3.4. Requirements to the content of the report

Report should contain 5 sections: Introduction (I), Methods (M),

Results (R), and Discussion (D)

– (I): background / theory, purpose and discovery questions;

68

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT.

– (M): complete description of the software, and procedures which

was followed in the experiment, experiment overview, Fig. / scheme of

testing environment, procedures;

– (R): narrate (like a story), conditional probability tables, indicate

final results;

– (D): answers on discovery questions, explanation of results, and

conclusion.

3.5. Control questions:

1. From test example you can see that can see the video delivered

quality is good when h1 is the sender, while the quality is poor when h2

is the sender. What do you this are the main reasons for it?

2. How does the loss rate of packages affect the quality of the

stream?

3. Does network latency is increasing with an increase in the rate of

packet loss information? Why?

4. How to change the percentage of packet loss between h2 and

switch?

5. How SDN approach can improve the quality of video stream

transmissions?

6. What criteria should meet successful solution for data streaming?

3.6. Literature:

1. P. Juluri, V. Tamarapalli, and D. Medhi, “Measurement of

Quality of Experience of Video-on-Demand Services: A Survey,” IEEE

Communications Surveys & Tutorials, vol. 18, no. 1, pp. 401–418, Jan.

2016.

2. R. K. P. Mok, E. W. W. Chan, and R. K. C. Chang, “Measuring

the quality of experience of HTTP video streaming,” IFIP/IEEE

International Symposium on Integrated Network Management and

Workshops, vol. 1, pp. 485–492, May 2011.

3. I. Zacarias, J. Schwarzrock, L. P. Gaspary, A. Kohl, R. Q.

Fernandes, J. M. Stocchero, and E. P. de Freitas, “Employing SDN to

control video streaming applications in military mobile networks,” IEEE

16th International Symposium on Network Computing and Applications

(NCA), October 2017, pp. 1-4. doi:10.1109/nca.2017.8171390.

69

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT

Tutorial 1

ALGORITHMS FOR CALCULATING THE OPTIMAL

POSITION OF THE SDN CONTROLLER

Goal and objectives: In this work we will focus on the analyzing

methods for the location of controllers in software-defined networks as

well as calculation of the optimal location of the controller using Pareto

optimality method, Pareto-Optimal Resilient Controller Placement.

Learning objectives:

– study the methods for calculating the optimal placement of the

SDN controller.

Practical tasks:

– acquire practical skills in working with the tools for calculating

the optimal position of the SDN controller;

– conduct an analytical review of existing methods / algorithms;

– acquire practical skills in calculating the optimal placement of the

SDN controller;

– draw up the report.

Setting up

In preparation for this practical training it is necessary:

– clarify the goals and mission of the research;

– study theoretical material contained in this manual, and in [1]-[3]

(additional useful information you can find in [4]-[6]);

– familiarize oneself with the main procedures and specify the

program according to defined task.

Recommended software and resources:

– Matlab 2007 to 2018;

– Pareto-Optimal Controller Placement tool (POCO):

https://github.com/lsinfo3/poco;

https://euros.informatik.uni-wuerzburg.de/public/localbackup.zip;

– Network topologies (task options for this practice work could be

downloaded from http://www.topology-zoo.org/dataset.htm).

https://github.com/lsinfo3/poco
https://euros.informatik.uni-wuerzburg.de/public/localbackup.zip
http://www.topology-zoo.org/dataset.htm

70

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT.

1.1. Synopsis

When considering several performance and stability indicators,

there is usually not the only best solution for controller placement, but

there is a trade-off between these indicators. For this practical lesson, the

platform for flexible placement based on the Pareto Optimal COntroller

(POCO) is used, which provides the network operator with the entire

Pareto-optimal placement. POCO-PLC toolset facilitates the analysis and

optimization of the controller placement in SDN networks under

dynamic conditions.

1.2. Execution order

Step 1. Install Matlab;

Step 2. Download POCO from https://github.com/lsinfo3/poco;

Step 3. Deploy POCO to Matlab;

Step 4. Launch POCO and calculate the optimal location of the SDN

controller. To use POCO PLC, follow the steps given below.

1. Extract the localbackup folder (https://euros.informatik.uni-

wuerzburg.de/public/localbackup.zip) to the POCO root folder (i.e., the

localbackup folder should be in the same folder as poco_GUI.m). Each

of these CSV files contains RTT values for each pair of nodes in the

planetlabV2.topo.mat topology for a given timestamp.

2. From http://www.topology-zoo.org/dataset.html download

network model (select variants with many of network devices) in

GraphML format.

3. Start Matlab. Open POCO folder (change destination).

4. Launch POCO by running poco_GUI in MATLAB.

5. From the menu, select POCO PLC → Start POCO PLC.

6. In the opened explorer window, specify the path to your file. As a

result, you can see your network (Fig. 44).

https://github.com/lsinfo3/poco
http://www.topology-zoo.org/dataset.html

71

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT.

Fig. 44 – GTS Poland network (Europe)

Scenario configuration will be defined now. It includes the number

of controllers for failure tree.

7. From the menu, select Placements → Calculate placements →

Failure free → k = ... In the example below (see Fig. 45), we placed

different numbers of controllers.

8. In Pareto-plot, click on a placement to activate it.

9. From the menu, select POCO PLC → Start Planetlab Plot Loop.

To get started with custom PLC scripts, check the PLCPlotLoop

function in poco_GUI.m and adapt the code in the code / * PLC.m files.

Fig. 45 – Controller placements

72

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT.

Step 5. Analyze various network configurations and the quality of

the algorithm. To do it you can use system reconfiguration changing the

values of controller imbalance, max node of controller latency, etc.

Do the substeps given below.

1. Click on “controller imbalance” and choose k = 3. You will see

high-loaded sections of the network (areas in Fig. 46 marked with red).

The more nodes the controller controls, the higher the load on that

controller is. When the number of requests from the node to the

controller in the network increases, the probability of additional delays

due to queuing up to the controller increases.

Fig. 46 – Result of changing values of the controller imbalance

Thus, in scenarios where the nodes often communicate with their

controller, it is necessary that the distribution between the nodes of the

controller is well balanced.

2. Click “max node controller latency”.

As can be seen from Fig. 47, if both indicators of delay and

reliability are taken into account at once, then usually there is no single

best solution for the placement of the controller, but instead a

compromise.

73

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT.

Fig. 47 – Max node controller latency

In Fig. 47, most delay-based deployment schemes currently mainly

focus on transmission delay (TD) or propagation delay (PD).

3. Click “controller-less nodes heatmap”. It will indicate whether

the risk of controller-less nodes exists in current architecture or not. Red

nodes indicate an increased risk.

Fig. 48 – Controller-less nodes heatmap

4. Click “Max controller to controller latency”.

74

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT.

Fig. 49 – Max controller to controller latency

The graph below the network shows the Pareto optimality level,

which changes when different options are selected. Vertical and

horizontal convergence (dotted line) - this is the most optimal option for

the location of the controller. As you can see, in the last figure, the

location was changed to close to optimal, and it turned out to be the

location of the controllers next to each other, but other network

parameters were not taken into account, therefore it is not optimal.

Step 6. Make an analytical review of existing methods, algorithms

and tools for calculating the optimal placement of the SDN controller.

Draw up a report, answer the questions.

1.3. Control questions:

1. What methods for calculating the optimal location of the SDN

controller do you familiar with?

2. What is Pareto optimality level regarding the SDN tasks?

3. When optimization algorithms are used in SDN?

4. What consequences can there be if the location of the SDN

controller is not optimal?

5. What is controller latency? How it can be measured?

6. What are advantages / disadvantages of the proposed tool?

75

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT.

7. How the levels of controller imbalance influence the system

performance?

8. What is the best solution for controller placement?

9. What network parameters are affected by the placement of the

controller?

10. How does a controller layout change network capabilities?

1.4. Recommended literature:

1. D. Hock, M. Hartmann, S. Gebert, M. Jarschel, T. Zinner, P.

Tran-Gia, “Pareto-Optimal Resilient Controller Placement in SDN-based

Core Networks,” Proceedings of the 2013 25th International Teletraffic

Congress (ITC). September 2013, paper no. 83, pp. 1-9.

DOI: 10.1109/ITC.2013.6662939

2. Pareto efficiency. Enwikipediaorg. 2018. [Online]. Available:

https://en.wikipedia.org/wiki/Pareto_optimality. [Accessed: 4 Feb.

2018].

3. D. Hock, M. Hartmann, S. Gebert, T. Zinner, and P. Tran-Gia,

2014, “POCO-PLC: Enabling dynamic pareto-optimal resilient controller

placement in SDN networks,” IEEE Conference on Computer

Communications Workshops (INFOCOM WKSHPS). 2014.

DOI: 10.1109/infcomw.2014.6849182.

4. K. S. Sahoo, S. Sahoo, S. K. Mishra, S. Mohanty, B. Sahoo,

“Analyzing Controller Placement in Software Defined Networks,”

National Conference on Next Generation Computing and its

Applications in Computer Science & Technology, 2016.

5. “K-means and K-medoids” Mathleacuk. 2018. [Online].

Available:http://www.math.le.ac.uk/people/ag153/homepage/KmeansK

medoids/Kmeans_Kmedoids.html. [Accessed: 4 Feb. 2018].

6. The Internet Topology Zoo. Topology-zooorg. 2018. Available

at: http://www.topology-zoo.org/dataset.html. [Accessed: 4 Feb. 2018].

7. POCO-Framework for Pareto-Optimal Resilient Controller

Placement in SDN-based Core Networks [Online]. Available:

https://github.com/lsinfo3/poco. [Accessed: 4 Feb. 2018].

8. A survey and classification of controller placement problem in

SDN [Online]. Available:

https://www.researchgate.net/publication/323974224_A_survey_and_cla

ssification_of_controller_placement_problem_in_SDN [Accessed: 4

Feb. 2018].

https://doi.org/10.1109/ITC.2013.6662939
https://en.wikipedia.org/wiki/Pareto_optimality
https://github.com/lsinfo3/poco

76

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT.

Tutorial 2

ALGORITHMS FOR LOAD BALANCING IN SDN

Goal and objectives: In this laboratory work, the http requests from

different clients will be directed to different pre-defined http servers. The

server is based on round-robin scheduling algorithm.

Learning objectives:

– study network load balancing methods, algorithms and tools.

Practical tasks:

– acquire practical skills in working with network load balancing

tools;

– conduct an analytical review of existing methods, algorithms and

tools for SDN load balancing;

– draw up the report.

Setting up

In preparation for this practical training it is necessary:

– clarify the goals and mission of the research;

– study theoretical material contained in this manual, and in [1]-[4];

– familiarize oneself with the main procedures and specify the

program according to defined task.

Recommended software and resources:
– Mininet http://mininet.org/;

– OracleVM VirtualBOX:

https://www.oracle.com/technetwork/server-

storage/virtualbox/overview/index.html;

- SDNHub

http://yuba.stanford.edu/~srini/tutorial/SDN_tutorial_VM_32bit.ova.

2.1. Synopsis

Load balancing is a significant technology and it can help save

power and improve resource utilization in network. A typical load

balancing technique is to use a dedicated load balancer to forward the

client requests to different servers, this technique requires dedicated

hardware support which is expensive, lacks flexibility and is easy to

become a single point failure. In this tutorial, we will deal with the

implementation of a dynamic load balancing algorithm to distribute the

http://mininet.org/
https://www.oracle.com/technetwork/server-storage/virtualbox/overview/index.html
https://www.oracle.com/technetwork/server-storage/virtualbox/overview/index.html
http://yuba.stanford.edu/~srini/tutorial/SDN_tutorial_VM_32bit.ova

77

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT.

different traffic flows carried by a network through the different parallel

paths between source and destination. OpenFlow is the most common

protocol used in SDN networks which are used to communicate the

controller with all the Network Elements.

The simulation scenario consists of two http servers (h1 and h2),

four http clients (h3, h4, h5, h6), one POX controller and one switch in

the current mininet environment (see Fig. 50).

POX

 Controller

h1
Http

server

h2
Http

server

OpenFlow

Switch

h3

Http

client

h4

Http

client

h5

Http

client

h6

Http

client

Fig. 50 – Example of network under the test

In this work, we use a POX controller to implement load balancing.

Mininet is used to create a virtual network topology. The server

balancing algorithm is assumed to be based on round-robin scheduling.

The load balancing switch overwrites the destination IP address of each

client packet to the destination replica address. The round-robin

algorithm uses a circular queue to decide where to send the query. The

load-based policy sends a request to the server with the lowest load,

where the load is defined as the number of pending requests.

2.2. Execution order

Step 1. Run POX controller and debug IP load balancer.

> cd pox

> ./pox.py log.level –DEBUG misc.ip_loadbalancer -

-ip=10.0.1.1 –servers=10.0.0.1, 10.0.0.2

78

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT.

Fig. 51 – Run POX controller

Step 2. Create a network topology in Mininet according to

your individual task or as it depicted in Fig. 52.

> sudo mn --topo single,6 --mac --arp --

controller=remote

Fig. 52 – Creating a network

Step 3. Open up windows of hosts.

> xterm h1 h2 h3 h4 h5 h6

79

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT.

Fig. 53 – Adding hosts

Step 4. Launch two http servers.

After creating your own topology, you need to configure the

servers. For the current example, in nodes 1 and 2, the HTTP Server

consists of port number 80.

On h1 host:
> python –m SimpleHTTPServer 80

On h2 host:
> python –m SimpleHTTPServer 80

The servers must be configured with a unique IP address. Use the

IPerf network tool to measure TCP and UDP bandwidth performance.

The user can perform a series of tests that provide insight into network

bandwidth availability, data loss, latency, and jitter.

Fig. 54 – Launching the HTTP Servers for node h1 and h2

80

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT.

Depending on the flow of traffic to the server from client nodes, the

server is scheduled. Clients access the service through one public IP

address, accessible through the gateway switch.

Step 5. Send traffic to the server. To do this use the curl command:

> curl 10.0.1.1

The curl command can be used from all the four HTTPClient nodes.

The Fig. 55 shows the http clients which send the traffic to the servers.

This receives the web page from the server IP address. Thus, using a

round robin algorithm, the client receives a server in a circle.

Fig. 55 – List of the http clients which send the traffic to the servers

Step 6. Send requests from all hosts to the controller using the same

command.

81

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT.

By sending requests, we can observe how the controller balances

traffic between h1 and h2 (Fig. 56). Requests are also visible on the

servers themselves (h1, h2 nodes).

Fig. 56 – Controller window

Step 7. Observe the distribution of requests in the root of the

controller.

Step 8. Make an analytical review of existing methods, algorithms

and tools for load balancing in SDN. Draw up a report, answer the

questions.

2.3. Control questions:

1. What are balancing methods used for?

2. Describe one of the methods / algorithms for balancing traffic.

82

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT.

3. How load balancing can improve the quality of transmissions in

SDN?

4. What network load balancing algorithms do you know?

5. What are the differences between traditional routing and SDN

routing?

6. How load balancing can be achieved?

7. How POX controller is used for implementing the load

balancing?

8. What network tool can be used for measuring TCP and UDP

bandwidth performance?

9. What are the main features of dynamic Load Balancing?

2.4. Recommended literature:
1. K. Qin and X. Liu, “Internet-of-Things monitoring system of

robot welding based on software defined networking,” 2016 First IEEE

International Conference on Computer Communication and the Internet

(ICCCI). October 2016, pp. 112-117. DOI 10.1109/cci.2016.7778889.

2. J. McCauley, “Recursive SDN for Carrier Networks,” ACM

SIGCOMM Computer Communication Review, vol. 46, no. 4, pp. 1-6,

Oct. 2016.

3. M. Pak, “Equal-Cost Multi-Path (ECMP) Routing in Software-

Defined Networking,” Csbrownedu. 2018. Available at:

https://cs.brown.edu/research/pubs/theses/capstones/2015/pak.pdf.

[Accessed: Feb. 2018].

4. G.N. Sentil, S. Ranjani, “Dynamic load balancing using

Software Defined networks,” International Journal of Computer

Applications, 2015, pp, 11-14. [Online]. Available:

https://pdfs.semanticscholar.org/4003/55f7f9632e6c2f33024c45788ed4a

e279519.pdf [Accessed: 4 Feb. 2018].

https://cs.brown.edu/research/pubs/theses/capstones/2015/pak.pdf
https://pdfs.semanticscholar.org/4003/55f7f9632e6c2f33024c45788ed4ae279519.pdf
https://pdfs.semanticscholar.org/4003/55f7f9632e6c2f33024c45788ed4ae279519.pdf

83

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT.

Tutorial 3

ALGORITHMS FOR FINDING THE SHORTEST PATH IN

NETWORK

Goal and objectives: Analysis of the Bellman–Ford algorithm for

finding the shortest path between two nodes in a network using SDN

environment.

Learning objectives:

– study existing algorithms for finding the optimal path in networks;

– study the principles of operation of protocols based on algorithms.

Practical tasks:

– acquire practical skills in working with shortest path algorithms;

– conduct an analytical review of existing methods and algorithms

to find a shortest path in SDN;

– draw up the report.

Setting up

In preparation for this practical training it is necessary:

– clarify the goals and mission of the research;

– study theoretical material contained in this manual, and in [1]-[4];

– familiarize oneself with the main procedures and specify the

program according to defined task.

Recommended software and resources:

– Mininet emulator: http://mininet.org/;

– OracleVM VirtualBOX:

https://www.oracle.com/technetwork/server-

storage/virtualbox/overview/index.html;

– SDNHub:

http://yuba.stanford.edu/~srini/tutorial/SDN_tutorial_VM_32bit.ova.

3.1. Synopsis

As it can be seen from previous works, traffic in SDN can be shaped

from controller without configuring the individual switches. The

administrator can build application based on their organization

requirement, thus giving flexibility and efficiently managing traffic.

In this tutorial, we will implement the Bellman–Ford algorithm to

find the shortest path between two nodes in a network using SDN

environment. POX will be used to implement the Bellman–Ford

http://mininet.org/
https://www.oracle.com/technetwork/server-storage/virtualbox/overview/index.html
https://www.oracle.com/technetwork/server-storage/virtualbox/overview/index.html
http://yuba.stanford.edu/~srini/tutorial/SDN_tutorial_VM_32bit.ova

84

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT.

algorithm. The Bellman–Ford algorithm will be used as an efficient

approach since each node only needs to know its own number and be

able to derive the number of neighbors it has. The calculation of the

shortest path to a given destination will be done by hoping neighbor by

neighbor from each source to destination [1].

The simulation scenario consists of eight hosts (h1, h2, h3, h4, h5,

h6, h7, h8), seven switches (s1) and one POX controller in the current

mininet environment (see Fig. 57).

h3

Host

h4

Host

h5

Host

h6

Host

h2

Host

h1

Host

h7

Host

h8

Host

POX

 Controller

S1

S1 S1

S1

S1 S1

S1

Fig. 57 – Example of network under the test

3.2. Execution order

Step 1. Prepare file with l2_bellmanford.py from the Appendix E or

download it from [2] and save this file under /pox/ext folder.

Step 2. Create a network topology in Mininet according to your

individual task or as it depicted in Fig. 57.

> sudo mn --topo three, 3

Step 3. Stop default controller:

> ps –aux | grep controller

> kill "your_process_ID"

85

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT.

Fig. 58 – Stopping default controller

1. Step 4. Configure POX and run bellmanford module from POX

controller. To do it, in pox folder execute the command:

> ./pox.py log.level –CRITICAL l2_bellmanford

openflow.discovery

Fig. 59 – Configure POX

Step 5. Ping the h7 host from h1 host:

> h1 ping –c 3 h7

Fig. 60 – Ping test result from host h1 to host h7

86

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT.

We will see the new paths that are built using the Bellman-Ford

algorithm for IP and ARP packets transmission.

Fig. 61 – List of paths that have been built using Bellman-Ford

algorithm

Step 6. Ping the h6 host from h3 host:

> h3 ping –c 3 h6

Fig. 62 – Ping h3 to h6

87

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT.

A new route will be created. Once all the switches and links have

been detected, transmission of packets is now possible. When host h3

pings h6, Bellman-Ford algorithm finds the shortest path for the

transmission as shown in Fig. 63.

Fig. 63 – Routing along shortest path

Step 7. Observe the bandwidth and throughput of the network using

a TCP stream.

Step 8. Make an analytical review of existing methods, algorithms

and tools for load balancing in SDN. Draw up a report, answer the

questions.

An example of individual tasks (different number of hosts):

Variant 1:

> sudo mn --topo tree,depth=2,fanout=5

Variant 2:

> sudo mn --topo tree,depth=2,fanout=6

Variant 3:

> sudo mn --topo tree,depth=2,fanout=7

88

PCM2.3. Algorithms and applications for utilization of SDN technology to IoT.

3.3. Control questions:

1. What tools are used for communication between the controller

and the switches?

2. How the controller coordinates with the switch using open flow

protocol?

3. What algorithms can be used algorithm to find the shortest path

between two nodes in a network using SDN environment?

4. What shortest path algorithms do you know?

5. What algorithm is considered as optimal? Why?

6. What network protocols use shortest path algorithms?

7. What are the differences between traditional routing and SDN

routing?

8. How load balancing can be achieved?

9. How POX controller is used for implementing the load

balancing?

3.4. Recommended literature:
1. A. Shivendu, D. Ghakal, D. Sharma, “Emulation of Shortest

Path Algorithm in Software Defined Networking Environment,”

International Journal of Computer Applications, 2015, vol. 116, no. 1,

pp. 47-49.

2. C.-H. Ke “Using Bellman-Ford to find a shortest path (version

2),” 2018. [Online]. Available: http://csie.nqu.edu.tw/smallko/sdn/

bellmanford2.htm [Accessed: 4 Feb. 2018].

3. T. Huang, “Path Computation Enhancement in SDN Networks,”

Canada, 2015. [Online]. Available: http://digital.library.ryerson.ca/

islandora/object/RULA%3A4465/datastream/OBJ/download/Path_comp

utation_enhancement_in_SDN_networks.pdf [Accessed: 4 Feb. 2018].

4. S. M. Shamim, M. B. Miah, A. Sarker , A. N. Bahar, and A.

Sarker, “Simulation of Minimum Path Estimation in Software Defined

Networking Using Mininet Emulator,” British Journal of Mathematics &

Computer Science, 2017, vol. 21, no. 3, pp. 1-8.

http://csie.nqu.edu.tw/smallko/sdn/bellmanford2.htm
http://csie.nqu.edu.tw/smallko/sdn/bellmanford2.htm
http://digital.library.ryerson.ca/islandora/object/RULA%3A4465/datastream/OBJ/download/Path_computation_enhancement_in_SDN_networks.pdf
http://digital.library.ryerson.ca/islandora/object/RULA%3A4465/datastream/OBJ/download/Path_computation_enhancement_in_SDN_networks.pdf
http://digital.library.ryerson.ca/islandora/object/RULA%3A4465/datastream/OBJ/download/Path_computation_enhancement_in_SDN_networks.pdf

89

PCM2.4. SDN-DevOps project development using CI/CD tools

PCM2.4. Development of project for SDN-DevOps using modern

CI/CD tools

Assoc. Prof., Dr. D.D. Uzun

1. Objectives and tasks

Objectives: to study the known techniques and tools used in

Continuous Integration / Continuous Delivery (Deployment) (CI/CD)

pipeline and apply them to provide processes of software development

lifecycle (SDLC).

Learning tasks:
– to study the principles of DevOps techniques;

– to study the connection between DevOps techniques and

processes of software development lifecycle;

– to select the correct tools to provide dependable functioning of

software development lifecycle.

Practical tasks:
– to gain experience with installation and configuring all tools

through the CI/CD pipeline;

– to develop the summary project using configured on previous step

CI/CD pipeline.

Exploring tasks:
– to make grounded choice of each tools during CI/CD pipeline

development.

Setting up
– to study the theoretical basics can be used materials contained in

the according chapter, as well as a list of references.
Synopsis
For successfully development of this summary project, students

should go through the process of CI/CD pipeline configuring and

appropriate application development.

2. A brief introduction to DevOps and the CI/CD pipeline

DevOps, like agile, has evolved to encompass many different

disciplines, but most people will agree on a few things: DevOps is a

software development practice or a software development lifecycle

(SDLC) and its central tenet is cultural change, where developers and

non-developers all breathe in an environment where formerly manual

90

PCM2.4. SDN-DevOps project development using CI/CD tools

things are automated; everyone does what they are best at; the number of

deployments per period increases; throughput increases; and flexibility

improves.

While having the right software tools is not the only thing you need

to achieve a DevOps environment, some tools are necessary. A key one

is continuous integration and continuous deployment (CI/CD). This

pipeline is where the environments have different stages, manual things

are automated, and developers can achieve high-quality code, flexibility,

and numerous deployments.

This brief introduction describes an approach to creating a DevOps

pipeline, using open source tools. The results are given in Table 1.

Table 1 - Open source tools for creating a DevOps pipeline
CI/CD

framework

Source

control

managem

ent

Build

automation

tool

Web

application

server

Code

testing

coverage

Middleware

automation

tools

Jenkins

Travis CI

Cruise

Control

Buildbot

Apache

Gump

Cabie

Git

Subvers

ion

Concurr

ent

Version

s

System

(CVS)

Vesta

Mercuri

al

Maven

Ant

Gradle

Bazel

Make

Grunt

Gulp

Buildr

Rake

A-A-P

SCons

BitBake

Cake

ASDF

Cabal

Tomcat

Jetty

WildFly

GlassFish

Django

Tornado

Gunicorn

Python

Paste

Rails

Node.js

JUnit

EasyMock

Mockito

PowerMoc

k

Pytest

Hypothesis

Tox

Ansible

SaltStack

Chef

Puppet

Also, optional tools can be applied into the summary project

development. It means, that application server can be hosted on a virtual

machine (VM), on a server, or in containers, which is a frequently used

solution for now. The short explanation is that a VM needs the huge

footprint of an operating system, which overwhelms the application size,

while a container just needs a few libraries and configurations to run the

application. There are clearly still important uses for a VM, but a

91

PCM2.4. SDN-DevOps project development using CI/CD tools

container is a lightweight solution for hosting an application, including

an application server. Although there are other options for containers,

Docker and Kubernetes are the most popular. The results of comparison

between Virtual Machines and Containers are given in Table 2.

Table 2 – The results of comparison between VMs and Containers

Server virtualization reproduces an entire computer in hardware,

which then runs an entire operation system (OS). The OS runs one

application. That’s more efficient than no virtualization at all, but it still

duplicates unnecessary code and services for each application you want

to run.

Containers take an alternative approach. They share an underlying

OS kernel, only running the application and the things it depends on, like

software libraries and environment variables. So, this makes containers

smaller and faster to deploy.

Additional materials for development of summary project for SDN-

DevOps course using modern CI/CD tools are described in Part VI

(sections 20-22 and especially section 23) of the book [6].

3. Execution order

In order to successfully development of summary project for SDN-

DevOps course using modern CI/CD tools the following steps are

needed:

92

PCM2.4. SDN-DevOps project development using CI/CD tools

– first, create a prototype of the final project, it may be simple,

because it is not the aim of this course to make a complex fully

functional project;

– second, add the project source code to the Version Control System

(VCS) (for example, GitHub (add, commit and push));

– third, install and configure the CI/CD framework (Jenkins, for

example);

– forth, install and configure the build automation tool;
– fifth, install and setup middleware automation tools (if needed);
– sixth, justify the using of Virtual Machines vs Containers;

– seventh, install and configure of chosen web application server

– eighth, install and setup the code testing coverage tool;

– ninth, prepare the presentation for all previous steps;
– tenth, formulate outcomes.

All mentioned above steps can be presented on Fig. 1, 2.

Fig. 1 – CI/CD process staging using open source tools

93

PCM2.4. SDN-DevOps project development using CI/CD tools

Fig. 2 – CI/CD process pipeline using open source tools

4. Requirements to the content of the report

The report should include:

– title page;

– project name, goal and tasks;

– description of chosen VCS;

– reasons for chosing CI/CD framework;

– advantages of chosen build automation tool;

– argumentation for chosing middleware automation tools;

– features of using Virtual Machines or Containers;

– advantages of chosen web application server

– description of chosen code testing coverage tool;

– presentation for all previous steps;

– developed project online working presentation;

– conclusions.

5. Testing questions

1. Define what continuous integration is?

2. Enumerate, what continuous integration tools do you know?

3. Describe the processes of continuous delivery/deployment, what

is the difference between them?

94

PCM2.4. SDN-DevOps project development using CI/CD tools

4. Why the open source tools are preferred in CI/CD pipeline?

5. What version control systems do you know?

6. What CI/CD frameworks do you know?

7. What build automation tool do you know?

8. What middleware automation tools do you know?

9. What web application server do you know?

10. What code testing coverage tool do you know?

6. References

1. Installing Jenkins [Online]. Available:

https://jenkins.io/doc/book/installing/.

2. Git Handbook [Online]. Available:

https://guides.github.com/introduction/git-handbook/

3. Get Started with Docker, Part 1: Orientation and setup, [Online].

Available: https://docs.docker.com/get-started/

4. The Apache HTTP Server Project, [Online]. Available:

https://httpd.apache.org/ABOUT_APACHE.html

5. Set Up a Jenkins Build Server, [Online]. Available:

https://aws.amazon.com/getting-started/projects/setup-jenkins-build-

server/

6. Internet of Things for Industry and Human Application. In

Volumes 1-3. Volume 2. Modelling and Developmentment/V. S.

Kharchenko (ed.) - Ministry of Education and Science of Ukraine,

National Aerospace University KhAI, 2019. – 547 p.

Seminar

Methodology of DevOps in context of SDN and Internet of

Things application

Prof., DrS V.S. Kharchenko, Assoc. Prof., Dr. D.D. Uzun, Senior

Lecturer Y.O. Uzun, PhD student P.A. Hodovaniuk (KhAI)

1. Seminar objectives

The objectives areto provide knowledge and practical skills on:

https://guides.github.com/introduction/git-handbook/
https://docs.docker.com/get-started/
https://httpd.apache.org/ABOUT_APACHE.html
https://aws.amazon.com/getting-started/projects/setup-jenkins-build-server/
https://aws.amazon.com/getting-started/projects/setup-jenkins-build-server/

95

PCM2.4. SDN-DevOps project development using CI/CD tools

– preparation of a report (analytical review or vision and brief

specification of developed project - SDP) on analysis of:

a) methodology DevOps and its security related modification

DevSecOps development and application;

b) implementation of methodology DevOps/DevSecOpsin context

of application of software defined networks (SDN) and Internet of

Things (IoT);

– preparation of a ppt presentation according with report results for

short lecture/seminar for other students;

–- presentation and defence of received results.

2. Seminar preparation

Seminar preparation includes the following steps.

1) Assignment (choice) of report subject(analytical review, SDP)

and tasks specification.

The report subject is to be agreed with the lecturer. It can be chosen

by students on their own based on the following suggested list:

– principles, methodologies, methods, tools, technologies…;

– DevOps, DevSecOps:

– SW defined networks, SW defined datacenters, SW defined

computing, SW defined infrastructure, SW defined everything...;

– Internet of things, Industrial IoT, IoT architectures, data transfer,

Internet routing…;

– cloud computing, fog computing, edge computing…;

– industrial systems, enterprise, manufacturing…;

– human-machine interfaces, user interfaces, human factors...;

– cyber security, safety, dependability, maintainability…;

– AI, machine learning, neural nets…;

– web services, SOA, monolith services, micro services, serverless

technology….

Suggested report subjects (can be extended):

– Analysis of concepts, principles and technologies DevOps;

– DevOps as a stage of system IT engineeringevolution;

– Comparative analysis of DevOps and DevSecOps;

– DevSecOps integration into software development lifecycle;

– DevOps and SDX technologies: crossing for synergy;

96

PCM2.4. SDN-DevOps project development using CI/CD tools

– DevOps and IoT technologies: crossing for synergy;

– DevOps and cloud technologies: crossing for synergy;

– Analysis of SDX technologies (X = {networking, computing,

infrastructuring});

– Metrics and assessment techniques for DevOps application

efficiency;

– Metrics and assessment techniques for DevSecOps application

efficiency;

– Life cycle of Dev(Sec)Ops related project: features and processes;

– Analysis of tools for Dev(Sec)Ops;

– DevOps in top technology trends (Gartner based analysis);

– Analysis of standards for Dev(Sec)Ops;

– AI, machine learning, neural nets…: How can modern

technologies be used for Dev(Sec)Ops implementation and enhancing?

Report subject is to be agreed with the lecturer and consist with the

subject area of the course (IoT and modern technologies for Industry 4.0,

5.0).

2) Work plan development and responsibility assignment

among target group members. Work plan can be presented as a Gantt

chart that includes the main events, time-frames and assignment of

responsibility among the target group members.

The target group consists of 2-3 persons.

Time resource is 8х(2/3) = 16/24 hours (+ 20 minutes for the

presentation and defence). The responsibility assignment is determined

by the group members.

Suggested responsibility assignment:

– manager responsible for planning and coordination of activities

and presents the idea on the seminar (1st part of the overall report - task

statement),

– analyst or system developer (2nd part of the report),

– application developer (3rd part of the report + style concept).

3) Search of the information about report subject (library, the

Internet, resources from department) and primary analysis. The search of

the information is conducted using the keywords given in paragraph 2

(1). Methodological guidelines and the selected readings are given

individually (per groups).

Please use reference list [1-21]. Theoretical issues for DevOps and

SDN/IoT interaction particularities are described in Part VI (SDN –

97

PCM2.4. SDN-DevOps project development using CI/CD tools

section 20-22, DevOps and SDN/IoT – section23) of the book [1].

Additional references can be searched in Internet according with

keywords and recommendations of lecturer.

4) Report and presentation plans development. Report plan

includes:

- introduction (relevance, reality challenges, brief analysis of the

problem - references, purpose and tasks of the report, structure and

contents characteristics);

- systematized description of the main report parts (classification

schemes, models, methods, tools, technologies, selection of indexes and

criteria for assessment, comparative studies);

- conclusions (established goal achievement, main theoretical and

practical results, result validity, ways of further work on the problem);

- list of references;

- appendixes.

5) Report writing. The report should stand for 15-20 A4 pages

(font size 14, spacing 1.5., margins 2 cm) including the title page,

contents, main text, list of references, appendixes. Unstructured reports

or reports compiled directly from Internet sources (more 50%), having

incorrect terms and no conclusion shall not be considered.

The work plan and responsibility assignment (Gantt chart),

presentation slides and an electronic version of all material related to the

work are required to be included in appendixes.

6) Presentation preparation. The presentation is to be designed in

PowerPoint and be consistent with the report plan (10-15 slides); the

time-frame for the presentation is 15 minutes.

The presentation should include the slides as follows:

– title slide (specification of the educational institution, department,

course of study, report subject, authors, date);

– contents (structure) of the report;

– relevance of the issues covered, the purpose and the tasks of the

report based on the relevance analysis;

– slides with the details of the tasks;

– report conclusion;

– list of references;

– testing questions.

98

PCM2.4. SDN-DevOps project development using CI/CD tools

Each slide should include headers with the report subject and

authors.

The contents of the slides should include the keywords, figures,

formulas rather than the parts from the report.

The information can be presented dynamically.

3. Presentation

The presentation should be given at the seminar during 20 minutes

including presentation (10-15 minutes) and discussion (5-10 minutes).

Time schedule can be specified by lecturer.

4. Report assessment

The work is assessed on the following parameters:

a) report text quality (form and contents),

b) presentation quality (contents and style),

c) report quality (contents, logical composition, timing shared

among parts, conclusion),

d) fullness and correctness of the answers.

Each student is given an individual mark for the report and the

presentation based on the results and responsibility assignment.

5. References

1. Internet of Things for Industry and Human Application. In

Volumes 1-3. Volume 2. Modelling and Development /V. S. Kharchenko

(ed.) - Ministry of Education and Science of Ukraine, National

Aerospace University KhAI, 2019. –547 p.

2. Top 10 strategical technology trends in 2019 have been presented

by Gartner company [https://www.gartner.com/ en/doc/383829-top-10-

strategic-technology-trends-for-2019-a-gartner-trend-insight-report]

3. Introduction to DevOps on AWS, https://d0.awsstatic.com/

whitepapers/AWS_DevOps.pdf

4. A beginner's guide to building DevOps pipelines with open source

tools, https://opensource.com/article/19/4/devops-pipeline

5. DevOps - Technology and Tools overview,

https://www.gecko.rs/sites/default/files/pdf/Gecko_Solutions_DevOps_Tec

hnology_Overview.pdf

https://www.gartner.com/%20en/doc/383829-top-10-strategic-technology-trends-for-2019-a-gartner-trend-insight-report
https://www.gartner.com/%20en/doc/383829-top-10-strategic-technology-trends-for-2019-a-gartner-trend-insight-report
https://www.gecko.rs/sites/default/files/pdf/Gecko_Solutions_DevOps_Technology_Overview.pdf
https://www.gecko.rs/sites/default/files/pdf/Gecko_Solutions_DevOps_Technology_Overview.pdf

99

PCM2.4. SDN-DevOps project development using CI/CD tools

6. Practicing Continuous Integration and Continuous Delivery on

AWS, https://d1.awsstatic.com/whitepapers/DevOps/practicing-continuous-

integration-continuous-delivery-on-AWS.pdf

7. The DevOps Handbook: An Introduction Summary, https://

caylent.com/devops-handbook-introduction-summary/

8. The Definitive Guide to Scrum: The Rules of the Game,

https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-

US.pdf#zoom=100

9. DevOps in the Internet of Things. Six reasons it matters and how to

get there, https://events.windriver.com/wrcd01/wrcm/2016/08/WP-devops-

in-the-internet-of-things.pdf

10. DevOps for IoT Applications using Cellular Networks and Cloud,

Athanasios Karapantelakis, Hongxin Liang, Keven Wang, Konstantinos

Vandikas, Rafia Inam, Elena Fersman, Ignacio Mulas-Viela, Nicolas

Seyvet, Vasileios Giannokostas, https://www.ericsson.com/

assets/local/publications/conference-papers/devops.pdf

11. Vlasov, Y., Illiashenko, O., Uzun, D., Haimanov, O. Prototyping

tools for IoT systems based on virtualization techniques(Conference

Paper). Proceedings of 2018 IEEE 9th International Conference on

Dependable Systems, Services and Technologies, DESSERT 2018, 9

July 2018, P. 87-92

12. M. H. Syed, E. B. Fernández. Cloud Ecosystems Support for

Internet of Things and DevOps Using Patterns, Conference: 2016 IEEE

First International Conference on Internet-of-Things Design and

Implementation (IoTDI),DOI: 10.1109/IoTDI.2015.31

13. AWS IoT Plant Watering Sample, https://docs.aws.amazon.com/

iot/latest/developerguide/iot-plant-watering.html

14. Cloud Tutorial: AWS IoT, https://www.cse.wustl.edu/

~lu/cse521s/Slides/aws-iot.pdf

15. Network Transformation with NFV and SDN,

https://www.juniper.net/assets/us/en/local/pdf/whitepapers/2000628-

en.pdf

16. Operationalizing SDN and NFV Networks, https://www2.

deloitte.com/content/dam/Deloitte/us/Documents/technology-media-

telecommunications/us-tmt-operations-sdn-and-nfv-networks.pdf

17. Allan К. (2018), “Automated Security Testing Best Practices”

https://phoenixnap.com/blog/devsecopsbest-practices-automated-

security-testing

https://d1.awsstatic.com/whitepapers/DevOps/practicing-continuous-integration-continuous-delivery-on-AWS.pdf
https://d1.awsstatic.com/whitepapers/DevOps/practicing-continuous-integration-continuous-delivery-on-AWS.pdf
https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf#zoom=100
https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf#zoom=100
https://events.windriver.com/wrcd01/wrcm/2016/08/WP-devops-in-the-internet-of-things.pdf
https://events.windriver.com/wrcd01/wrcm/2016/08/WP-devops-in-the-internet-of-things.pdf
https://www.ericsson.com/assets/local/publications/conference-papers/devops.pdf
https://www.ericsson.com/assets/local/publications/conference-papers/devops.pdf
https://docs.aws.amazon.com/iot/latest/developerguide/iot-plant-watering.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-plant-watering.html
https://www.cse.wustl.edu/~lu/cse521s/Slides/aws-iot.pdf
https://www.cse.wustl.edu/~lu/cse521s/Slides/aws-iot.pdf
https://www.juniper.net/assets/us/en/local/pdf/whitepapers/2000628-en.pdf
https://www.juniper.net/assets/us/en/local/pdf/whitepapers/2000628-en.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/technology-media-telecommunications/us-tmt-operations-sdn-and-nfv-networks.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/technology-media-telecommunications/us-tmt-operations-sdn-and-nfv-networks.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/technology-media-telecommunications/us-tmt-operations-sdn-and-nfv-networks.pdf
https://phoenixnap.com/blog/devsecopsbest-practices-automated-security-testing
https://phoenixnap.com/blog/devsecopsbest-practices-automated-security-testing

100

PCM2.4. SDN-DevOps project development using CI/CD tools

18. Litz S. (2015) “What is DevSecOps” http://www.devsecops.org/

blog/2015/2/15/what-is-devsecops

19. Savant S(2018) “What is the difference between DevOps and

DevSecOps”, https://www.quora.com/What-is-the-difference-between-

DevOps-andDevSecOps

20. GitLab, (2018) “Static Application Security Testing (SAST)”,

https://docs.gitlab.com/ee/user/project/merge_requests/sast.html

21. S. Harris, “Physical and Environmental Security. In CISSP Exam

Guide”, USA McGraw-Hill, 6th ed., pp.427-502 2013.

http://www.devsecops.org/blog/2015/2/15/what-is-devsecops
http://www.devsecops.org/blog/2015/2/15/what-is-devsecops

101

Appendix A Teaching program of course PC2

APPENDIX А. TEACHING PROGRAM OF THE COURSE PCM 2

“SOFTWARE DEFINED NETWORKS AND IOT”

DESCRIPTION OF THE MODULE

TITLE OF THE MODULE Code

Software defined networks basics PCM 2.1

Teacher(s) Department

Coordinating: Assoc. Prof., Dr. R.K. Kudermetov

Others: Modules PCM2.1, PCM2.2: Assoc. Prof.,

Dr. V.V. Shkarupylo, Assoc. Prof., Dr.

R.K. Kudermetov, MSc student D.S. Mazur.

Module PCM2.3: DrS. I.S. Skarga-Bandurova,

PhD student A.Yu. Velykzhanin, Assoc. Prof. Dr.

L.O. Shumova. Module PCM2.4: Prof., DrS V.S.

Kharchenko, Assoc. Prof., Dr. D.D. Uzun, Senior

Lecturer Y.O. Uzun, PhD student P.A. Hodovaniuk

Computer systems and

networks (ZNTU),

Computer Engineering

(EUNU), Computer

Systems, Networks and

Cybersecurity

Department (KhAI)

Study cycle Level of the module Type of the module

PhD A Full-time tuition

Form of delivery Duration Language(s)

full-time tuition,

distance tuition

Four weeks English

Prerequisites

Prerequisites:
Computer Systems and Networks,

Software Engineering, Modern

Programming Methods, Modeling

Basics

Co-requisites (if necessary):

Credits of the

module

Total student

workload

Contact hours Individual work

hours

4 120 56 64

Aim of the module (course unit): competences foreseen by the study

program

The aim of the course is to give PhD students a deep understanding of Software

102

Appendix A Teaching program of course PC2

Defined Networking (SDN) – the important emerging network technology – to

teach to select, evaluate and implement SDN controllers for various platforms

and applications, theoretical and practical skills in the field of research, design

and modelling safety systems based on SDN with emphasize on IoT. During the

training, graduate students can study and analyze approaches to managing the

IoT with SDN, smart routing and scheduling, traffic management and

optimization in IoT.

Learning outcomes of module

(course unit)

Teaching/learning

methods

Assessment

methods

At the end of module the

successful student will be able

to:

1. Explain and discuss the basic

concepts and architecture of

SDN, concepts of managing the

IoT applications with SDN.

Lectures,

Learning in

laboratories

Module Evaluation

Questionnaire

2. Compare and contrast

common networking approaches

and SDN.

Interactive lectures,

Learning in

laboratories

Module Evaluation

Questionnaire

3. Describe the SDN data plane.

Explain the operation of SDN

control plane.

Interactive lectures,

Learning in

laboratories

Module Evaluation

Questionnaire

4. Explain network

virtualization.

Interactive lectures,

Learning in

laboratories

Module Evaluation

Questionnaire

5. Compare and contrast

OpenFlow releases.

Interactive lectures,

Learning in

laboratories

Module Evaluation

Questionnaire

6. Formulate requirements for

configuration SDN. Create and

analyze the configuration of

SDN.

Learning in

laboratories

Module Evaluation

Questionnaire

7. Employ obtained theoretical

knowledge for the purpose of

SDN simulation and deployment.

Learning in

laboratories

Module Evaluation

Questionnaire

8. Formulate main approaches,

techniques and tools for smart

routing and scheduling SDN to

IoT

Learning in

laboratories

Module Evaluation

Questionnaire

9. Formulate traffic management

tasks, traffic parameters, traffic

types and related data services,

Learning in

laboratories

Module Evaluation

Questionnaire

103

Appendix A Teaching program of course PC2

traffic management mechanisms

10. Use SDN-related languages

and programming approaches in

practice.

Learning in

laboratories

Module Evaluation

Questionnaire

11. Explain the operation of the

SDN for support IoT scalability,

agility and flexibility. Conduct

SDN composing, configuring

and scaling by way of

simulation.

Learning in

laboratories

Module Evaluation

Questionnaire

12. Design the architecture of

software-defined network with

respect to given requirements.

Learning in

laboratories

Module Evaluation

Questionnaire

13. Implement the design

solutions, obtained by way of

simulation, in practice.

Learning in

laboratories

Module Evaluation

Questionnaire

14. Perform administration of the

switches, management and

analysis of the results of traffic

monitoring.

Learning in

laboratories

Module Evaluation

Questionnaire

Themes

Contact work hours
Time and tasks for

individual work

L
ec

tu
re

s

S
em

in
ar

s

P
ra

ct
ia

cl
 w

o
rk

L
ab

o
ra

to
ry

 w
o

rk

T
o

ta
l

c
o

n
ta

ct
 w

o
rk

In
d

iv
id

u
a

l
w

o
rk

Tasks

1. Understanding SDN.

Historical Background and

Key Concepts

1.1. The Evolution of

Switches and Control Planes

1.2. The Evolution of

Networking Technology

1.3. Predecessors of SDN

1.4. Network Virtualization

2 2 4 1.5. Survey of

Computer Networks

Historical Evolution

1.6. Analysis of the

Research Papers

about SDN.

2. SDN Architecture and its

Components. Devices,

Controller, Applications

2 2 4 2.6. Perform a

Comparative

Analysis of Existing

104

Appendix A Teaching program of course PC2

2.1. Fundamental

Characteristics of SDN.

Plane Separation

2.2. SDN Operation

2.3. SDN Devices

2.4. SDN Controller.

Existing SDN Controller

Implementations

2.5. SDN Applications

SDN Controller

Implemen-tations

2.7. Create Existing

SDN Device

Implemen-tations

2.8. Classify the

Functions of SDN

Application

2.9. Compare SDN

with Alternative

Technologies

3. OpenFlow Protocol. The

Basics, Peculiarities and

Limitations

3.1. OpenFlow Overview

3.2. The OpenFlow Switch

and Controller

3.3. The OpenFlow Protocol

3.4. OpenFlow Releases 1.0,

1.2, 1.3 Survey

3.5. OpenFlow Limitations

2 2 4 3.6. Overview of

Open Networking

Foundation

Activities

3.7. Create a

Chronological

Report on the

Development

(Innovations) of

OpenFlow Switch

Specifications

4. Mininet installation and

configuring. Building simple

networking applications

 2 2 4 4.1. Create the

Report on the Topic

and answer the

Questions

5. Exploring OpenDaylight,

installation and configuring.

SDN Emulation with Mininet

and OpenDaylight

 2 2 4 5.1. Create the

Report on the Topic

and answer the

Questions

6. SDN Simulation. The

Basics, Toolboxes and Main

Concepts.

6.1. Considering SDN as a

System. Key Components:

Controllers, Switches,

Hosts.

6.2. Simulating SDN

Infrastructure. Network

Configuring and Scaling.

6.3 Network Orchestration

and Virtualization. The

2 2 4 6.4 An Overview

on SDN Simulation

Toolboxes.

6.5 Measurement

and Assessment of

QoS-related SDN-

metrics.

105

Appendix A Teaching program of course PC2

Simulation of Dataflows.

7. SDN Testing. OpenFlow

Protocol and Network

Validation.

7.1. Setting up the

Configuration of SDN in

Mininet Testing

Environment.

7.2. Testing the Soundness

and Consistency of SDN

Infrastructure.

7.3. Dataflows

Orchestration. SDN

Reconfiguration and

Scaling.

2 2 4 6 7.4. The API for

SDN Programming

and OpenFlow

Protocol.

8. Software-defined Networks

Programing and Python

Scripting.

8.1. An in-depth Look at

SDN-related Programming

Approaches, Principles and

Concepts.

8.2. Setting up SDN

Configuration by Way of

Python Scripting.

8.3. Sophisticating the

Python Scripting. Bringing

in the Automation.

2 4 6 6 8.4 The API for

SDN Programming

and OpenFlow

Protocol.

9. Managing the IoT with

SDN SLA management.

9.1. Metrics. Smart routing

and scheduling in SDN.

9.2. Data streaming over

SDN.

2 2 4 8 6 9.3. Metrics for

evaluation

performance of

QoS routing

algorithms. QoS

routing algorithms

applicable to large-

scale SDN.

10. Optimization of SDN

Traffic Flow for IoT.

10.1. Traffic scheduling

algorithms.

2 2 4 8 6 10.2.Algo-rithms

for calculating the

optimal position of

the SDN-controller.

10.3. Balancing

algorithms in IoT-

106

Appendix A Teaching program of course PC2

based software

defined networks.

7.4. Algo-rithms for

finding the optimal

path in SDN

networks.

11. SDN Performance

prediction.

11.1. Algorithms

performance metrics.

11.2. An overall approach to

detect and diagnose failures

in SDN.

2 2 4 8 6 11.3. Case study

12. Development of project

for SDN-DevOps using

modern CI/CD tools.

12.1. Principles of DevOps

techniques.

12.2. To study the

connection between DevOps

techniques and processes of

software development

lifecycle.

2 4 6 6 12.3. To select the

correct tools to

provide dependable

functioning of

software

development

lifecycle.

12.4. To gain

experience with

installation and

configuring all tools

through the CI/CD

pipeline.

12.5. To develop

the summary

project using

configured on

previous step

CI/CD pipeline.

12.6. To make

grounded choice of

each tools during

CI/CD pipeline

development.

13. Methodology of DevOps

in context of SDN and IoT.

 4 4 4 13.1. Preparation of

a report (analytical

review or vision

and brief

specification of

107

Appendix A Teaching program of course PC2

developed project -

SDP) on analysis

of:

a) methodo-logy

DevOps and its

security related

modification

DevSecOps

development and

application;

b) implemen-tation

of methodology

DevOps/DevSecOp

sin context of

application of

software defined

networks (SDN)

and Internet of

Things (IoT).

Total

20 4 10

22 5

6

64

Assessment

strategy

Wei

ght

in

%

Deadl

ines

Assessment criteria

Lecture activity,

including

fulfilling special

self-tasks

10 2, 4 85% – 100% An outstanding piece of

work, superbly organized and presented,

excellent achievement of the objectives,

evidence of original thought.

70% – 84% Students will show a

thorough understanding and appreciation

of the material, producing work without

significant error or omission. Objectives

achieved well. Excellent organization and

presentation.

60% – 69% Students will show a clear

understanding of the issues involved and

the work should be well written and well

organized. Good work towards the

objectives.

The exercise should show evidence that

108

Appendix A Teaching program of course PC2

the student has thought about the topic

and has not simply reproduced standard

solutions or arguments.

50% – 59% The work should show

evidence that the student has a reasonable

understanding of the basic material. There

may be some signs of weakness, but

overall the grasp of the topic should be

sound. The presentation and organization

should be reasonably clear, and the

objectives should at least be

partially achieved.

45% – 49% Students will show some

appreciation of the issues involved. The

exercise will indicate a basic

understanding of the topic, but will not

have gone beyond this, and there may

well be signs of confusion about more

complex material. There should be fair

work towards the laboratory work

objectives.

40% – 44% There should be some work

towards the laboratory work objectives,

but significant issues are likely to be

neglected, and there will be little or no

appreciation of the complexity of the

problem.

20% – 39% The work may contain some

correct and relevant material, but most

issues are neglected or are covered

incorrectly. There should be some signs of

appreciation of the laboratory work

requirements.

0% – 19% Very little or nothing that is

correct and relevant and no real

appreciation of the laboratory work

requirements.

Learning in

practicums

30 3,4 85% – 100% An outstanding piece of

work, superbly organized and presented,

excellent achievement of the objectives,

evidence of original thought.

70% – 84% Students will show a

thorough understanding and appreciation

109

Appendix A Teaching program of course PC2

of the material, producing work without

significant error or omission. Objectives

achieved well. Excellent organization and

presentation.

60% – 69% Students will show a clear

understanding of the issues involved and

the work should be well written and well

organized. Good work towards the

objectives.

The exercise should show evidence that

the student has thought about the topic

and has not simply reproduced standard

solutions or arguments.

50% – 59% The work should show

evidence that the student has a reasonable

understanding of the basic material. There

may be some signs of weakness, but

overall the grasp of the topic should be

sound. The presentation and organization

should be reasonably clear, and the

objectives should at least be

partially achieved.

45% – 49% Students will show some

appreciation of the issues involved. The

exercise will indicate a basic

understanding of the topic, but will not

have gone beyond this, and there may

well be signs of confusion about more

complex material. There should be fair

work towards the laboratory work

objectives.

40% – 44% There should be some work

towards the laboratory work objectives,

but significant issues are likely to be

neglected, and there will be little or no

appreciation of the complexity of the

problem.

20% – 39% The work may contain some

correct and relevant material, but most

issues are neglected or are covered

incorrectly. There should be some signs of

appreciation of the laboratory work

requirements.

110

Appendix A Teaching program of course PC2

0% – 19% Very little or nothing that is

correct and relevant and no real

appreciation of the laboratory work

requirements.

Module

Evaluation Quest

60 4 The score corresponds to the percentage

of correct answers to the test questions

Author Year

of

issue

Title No of

periodical

or volume

Place of

printing.

Printing house

or Internet link

Compulsory literature

P. Goransson,

C. Black,

T. Culver

2016 Software

Defined

Networks: A

Comprehensive

Approach - 2nd

Edition

 Morgan

Kaufmann

T.D. Nadeau,

K. Gray

2013 SDN: Software

Defined

Networks

 O'Reilly Media,

Inc.

F. Hu 2014 Network

Innovation

through

OpenFlow and

SDN: Principles

and Design

 6000 Broken

Sound Parkway

NW, Suite 300,

Boca Raton,

Florida, USA.

CRC Press.

Additional literature

N. Feamster,

J. Rexford

and E. Zegura.

2014 The Road to

SDN: An

Intellectual

History of

Programmable

Networks

Vol. 44(2) ACM

SIGCOMM

Computer

Communication

Review

B. Underdahl,

G. Kinghorn

2015 Software

Defined

Networking For

Dummies

 John Wiley &

Sons, Inc.

M. Casado,

M.J. Freedman,

J. Pettit, at al

2007 Ethane: Taking

control of the

enterprise.

Vol. 37(4) ACM

SIGCOMM

Computer

111

Appendix A Teaching program of course PC2

Communication

Review

B. Nunes,

M. Mendonca,

X. N. Nguyen,

at al.

2014 A Survey of

Software-

Defined

Networking:

Past, Present,

and Future of

Programmable

Networks

Vol. 16(3) IEEE

Communications

Surveys &

Tutorials

M. Casado,

N. Foster

and A. Guha.

2014 Abstractions for

Software-

Defined

Networks

Vol.

57(10)

Communications

of the ACM

B. Pfaff, J. Pettit,

K. Amidon, at al.

2009 Extending

Networking into

the

Virtualization

Layer.

 In Proc. Hotnets

P. Rekha and

M. Dakshayini

2015 A Study of

Software

Defined

Networking with

OpenFlow

Vol.

122(5)

International

Journal of

Computer

Applications

W. Braun and

M. Menth.

2014 Software-

Defined

Networking

Using

Openflow:

Protocols,

Applications and

Architectural

Design Choices.

Vol. 6(2) Future Internet

2009

-2016

OpenFlow

Switch

Specification

Ver 1.x.x

 https://www.openn

etworking.org/tech

nical-communities/

areas/specification

K. Kaur,

J. Singh, and

N. S. Ghumman.

2014 Mininet as

Software

Defined

Networking

testing platform

 In International

Conference on

Communication,

Computing &

Systems (ICCCS,

112

Appendix A Teaching program of course PC2

2014).

F. Keti and

Sh. Askar

2015 Emulation of

Software

DEFINED

networks Using

Mininet in

Different

Simulation

Environments

 In Intelligent

Systems,

Modeling and

Simulation

(ISMS), 2015 6th

International

Conference

J. Medved,

R. Varga,

A. Tkacik, and

K. Gray.

2014 OpenDaylight:

Towards a

Model-Driven

SDN Controller

Architecture.

 A World of

Wireless, Mobile

and Multimedia

Networks.

IEEE 15th

International

Symposium,

2014.

T. Bakhshi 2017 State of the Art

and Recent

Research

Advances in

Software

Defined

Networking

Vol. 2017 Wireless

Communications

and Mobile

Computing.

doi:

10.1155/2017/71

91647

113

Appendix B. Program code for Laboratory Work 3

Appendix B. Program code for Laboratory Work 3

from mininet.topo import Topo

class MyTopo(Topo):

 "Simple topology example."

 def __init__(self):

 "Create custom topo."

 # Initialize topology

 Topo.__init__(self)

 # Add hosts and switches

 h1 = self.addHost('h1')

 h2 = self.addHost('h2')

 h3 = self.addHost('h3')

 h4 = self.addHost('h4')

 s1 = self.addSwitch('s1')

 s2 = self.addSwitch('s2')

 # Add links

 self.addLink(h1, s1)

 self.addLink(h2, s1)

 self.addLink(h3, s1)

 self.addLink(s1, s2)

 self.addLink(s2, h4)

topos = { 'mytopo': (lambda: MyTopo()) }

from pox.core import core

import pox.openflow.libopenflow_01 as of

from pox.lib.util import dpidToStr

log = core.getLogger()

s1_dpid=0

s2_dpid=0

def _handle_ConnectionUp (event):

 global s1_dpid, s2_dpid

 print "ConnectionUp: ",

 dpidToStr(event.connection.dpid)

 #remember the connection dpid for switch

 for m in event.connection.features.ports:

 if m.name == "s1-eth1":

 s1_dpid = event.connection.dpid

 print "s1_dpid=", s1_dpid

 elif m.name == "s2-eth1":

 s2_dpid = event.connection.dpid

 print "s2_dpid=", s2_dpid

114

Appendix B. Program code for Laboratory Work 3

def _handle_PacketIn (event):

 global s1_dpid, s2_dpid

 # print "PacketIn: ",

dpidToStr(event.connection.dpid)

 if event.connection.dpid==s1_dpid:

 msg = of.ofp_flow_mod()

 msg.priority =1

 msg.idle_timeout = 0

 msg.hard_timeout = 0

 msg.match.dl_type = 0x0806

 msg.actions.append(of.ofp_action_output(port

= of.OFPP_ALL))

 event.connection.send(msg)

 msg = of.ofp_flow_mod()

 msg.priority =100

 msg.idle_timeout = 0

 msg.hard_timeout = 0

 msg.match.dl_type = 0x0800

 msg.match.nw_src = "10.0.0.1"

 msg.match.nw_dst = "10.0.0.4"

 msg.actions.append(of.ofp_action_enqueue(port

= 4, queue_id=1))

 event.connection.send(msg)

 msg = of.ofp_flow_mod()

 msg.priority =100

 msg.idle_timeout = 0

 msg.hard_timeout = 0

 msg.match.dl_type = 0x0800

 msg.match.nw_src = "10.0.0.2"

 msg.match.nw_dst = "10.0.0.4"

 msg.actions.append(of.ofp_action_enqueue(port

= 4, queue_id=2))

 event.connection.send(msg)

 msg = of.ofp_flow_mod()

 msg.priority =10

 msg.idle_timeout = 0

 msg.hard_timeout = 0

 msg.match.dl_type = 0x0800

 msg.match.nw_dst = "10.0.0.1"

 msg.actions.append(of.ofp_action_output(port

= 1))

 event.connection.send(msg)

 msg = of.ofp_flow_mod()

 msg.priority =10

 msg.idle_timeout = 0

 msg.hard_timeout = 0

 msg.match.dl_type = 0x0800

 msg.match.nw_dst = "10.0.0.2"

115

Appendix B. Program code for Laboratory Work 3

 msg.actions.append(of.ofp_action_output(port

= 2))

 event.connection.send(msg)

 msg = of.ofp_flow_mod()

 msg.priority =10

 msg.idle_timeout = 0

 msg.hard_timeout = 0

 msg.match.dl_type = 0x0800

 msg.match.nw_dst = "10.0.0.3"

 msg.actions.append(of.ofp_action_output(port

= 3))

 event.connection.send(msg)

 msg = of.ofp_flow_mod()

 msg.priority =10

 msg.idle_timeout = 0

 msg.hard_timeout = 0

 msg.match.dl_type = 0x0800

 msg.match.nw_dst = "10.0.0.4"

 msg.actions.append(of.ofp_action_output(port

= 4))

 event.connection.send(msg)

 elif event.connection.dpid==s2_dpid:

 msg = of.ofp_flow_mod()

 msg.priority =1

 msg.idle_timeout = 0

 msg.hard_timeout = 0

 msg.match.in_port =1

 msg.actions.append(of.ofp_action_output(port

= 2))

 event.connection.send(msg)

 msg= of.ofp_flow_mod()

 msg.priority=1

 msg.idle_timeout= 0

 msg.hard_timeout= 0

 msg.match.in_port=2

 msg.actions.append(of.ofp_action_output(port

= 1))

 event.connection.send(msg)

def launch ():

 core.openflow.addListenerByName("ConnectionUp",

_handle_ConnectionUp)

 core.openflow.addListenerByName("PacketIn",

_handle_PacketIn)

116

Appendix C. Program code for Tutorial 3

Appendix C. Program code for Tutorial 3

from pox.core import core

import pox.openflow.libopenflow_01 as of

from pox.lib.revent import *

from pox.lib.recoco import Timer

from collections import defaultdict

from pox.openflow.discovery import Discovery

from pox.lib.util import dpid_to_str

import time

log = core.getLogger()

Adjacency map. [sw1][sw2] -> port from sw1 to sw2

adjacency =

defaultdict(lambda:defaultdict(lambda:None))

Switches we know of. [dpid] -> Switch

switches = {}

ethaddr -> (switch, port)

mac_map = {}

Waiting path. (dpid,xid)->WaitingPath

waiting_paths = {}

Time to not flood in seconds

FLOOD_HOLDDOWN = 5

Flow timeouts

FLOW_IDLE_TIMEOUT = 10

FLOW_HARD_TIMEOUT = 30

How long is allowable to set up a path?

PATH_SETUP_TIME = 4

def _get_raw_path (src,dst):

 distance = {}

 previous = {}

 sws = switches.values()

 for dpid in sws:

 distance[dpid] = 9999

 previous[dpid] = None

 distance[src]=0

117

Appendix C. Program code for Tutorial 3

 for m in range(len(sws)-1):

 for p in sws:

 for q in sws:

 if adjacency[p][q]!=None:

 w = 1

 if distance[p] + w < distance[q]:

 distance[q] = distance[p] + w

 previous[q] = p

 r=[]

 p=dst

 r.append(p)

 q=previous[p]

 while q is not None:

 if q == src:

 r.append(q)

 break

 p=q

 r.append(p)

 q=previous[p]

 r.reverse()

 return r

def _check_path (p):

 for a,b in zip(p[:-1],p[1:]):

 if adjacency[a[0]][b[0]] != a[2]:

 return False

 if adjacency[b[0]][a[0]] != b[1]:

 return False

 return True

def _get_path (src, dst, first_port, final_port):

 if src == dst:

 path = [src]

 else:

 path = _get_raw_path(src, dst)

 if path is None: return None

 print "src=",src," dst=",dst

 print time.time(),": ",path

 r = []

 in_port = first_port

 for s1,s2 in zip(path[:-1],path[1:]):

 out_port = adjacency[s1][s2]

 r.append((s1,in_port,out_port))

118

Appendix C. Program code for Tutorial 3

 in_port = adjacency[s2][s1]

 r.append((dst,in_port,final_port))

 assert _check_path(r), "Illegal path!"

 return r

class WaitingPath (object):

 def __init__ (self, path, packet):

 self.expires_at = time.time() + PATH_SETUP_TIME

 self.path = path

 self.first_switch = path[0][0].dpid

 self.xids = set()

 self.packet = packet

 if len(waiting_paths) > 1000:

 WaitingPath.expire_waiting_paths()

 def add_xid (self, dpid, xid):

 self.xids.add((dpid,xid))

 waiting_paths[(dpid,xid)] = self

 @property

 def is_expired (self):

 return time.time() >= self.expires_at

 def notify (self, event):

 self.xids.discard((event.dpid,event.xid))

 if len(self.xids) == 0:

 if self.packet:

 log.debug("Sending delayed packet out %s"

 %

(dpid_to_str(self.first_switch),))

 msg = of.ofp_packet_out(data=self.packet,

action=of.ofp_action_output(port=of.OFPP_TABLE))

 core.openflow.sendToDPID(self.first_switch,

msg)

core.l2_multi.raiseEvent(PathInstalled(self.path))

 @staticmethod

 def expire_waiting_paths ():

 packets = set(waiting_paths.values())

 killed = 0

 for p in packets:

 if p.is_expired:

 killed += 1

119

Appendix C. Program code for Tutorial 3

 for entry in p.xids:

 waiting_paths.pop(entry, None)

 if killed:

 log.error("%i paths failed to install" %

(killed,))

class PathInstalled (Event):

 def __init__ (self, path):

 Event.__init__(self)

 self.path = path

class Switch (EventMixin):

 def __init__ (self):

 self.connection = None

 self.ports = None

 self.dpid = None

 self._listeners = None

 self._connected_at = None

 def __repr__ (self):

 return dpid_to_str(self.dpid)

 def _install (self, switch, in_port, out_port,

match, buf = None):

 msg = of.ofp_flow_mod()

 msg.match = match

 msg.match.in_port = in_port

 msg.idle_timeout = FLOW_IDLE_TIMEOUT

 msg.hard_timeout = FLOW_HARD_TIMEOUT

 msg.actions.append(of.ofp_action_output(port =

out_port))

 msg.buffer_id = buf

 switch.connection.send(msg)

 def _install_path (self, p, match, packet_in=None):

 wp = WaitingPath(p, packet_in)

 for sw,in_port,out_port in p:

 self._install(sw, in_port, out_port, match)

 msg = of.ofp_barrier_request()

 sw.connection.send(msg)

 wp.add_xid(sw.dpid,msg.xid)

 def install_path (self, dst_sw, last_port, match,

event):

 p = _get_path(self, dst_sw, event.port,

last_port)

 if p is None:

 log.warning("Can't get from %s to %s",

120

Appendix C. Program code for Tutorial 3

match.dl_src, match.dl_dst)

 import pox.lib.packet as pkt

 if (match.dl_type == pkt.ethernet.IP_TYPE and

 event.parsed.find('ipv4')):

 log.debug("Dest unreachable (%s -> %s)",

 match.dl_src, match.dl_dst)

 from pox.lib.addresses import EthAddr

 e = pkt.ethernet()

 e.src = EthAddr(dpid_to_str(self.dpid))

 e.dst = match.dl_src

 e.type = e.IP_TYPE

 ipp = pkt.ipv4()

 ipp.protocol = ipp.ICMP_PROTOCOL

 ipp.srcip = match.nw_dst

 ipp.dstip = match.nw_src

 icmp = pkt.icmp()

 icmp.type = pkt.ICMP.TYPE_DEST_UNREACH

 icmp.code = pkt.ICMP.CODE_UNREACH_HOST

 orig_ip = event.parsed.find('ipv4')

 d = orig_ip.pack()

 d = d[:orig_ip.hl * 4 + 8]

 import struct

 d = struct.pack("!HH", 0,0) + d #FIXME: MTU

 icmp.payload = d

 ipp.payload = icmp

 e.payload = ipp

 msg = of.ofp_packet_out()

 msg.actions.append(of.ofp_action_output(port

= event.port))

 msg.data = e.pack()

 self.connection.send(msg)

 return

 log.debug("Installing path for %s -> %s %04x (%i

hops)",

 match.dl_src, match.dl_dst, match.dl_type,

len(p))

 self._install_path(p, match, event.ofp)

 p = [(sw,out_port,in_port) for

121

Appendix C. Program code for Tutorial 3

sw,in_port,out_port in p]

 self._install_path(p, match.flip())

 def _handle_PacketIn (self, event):

 def flood ():

 if self.is_holding_down:

 log.warning("Not flooding -- holddown

active")

 msg = of.ofp_packet_out()

 msg.actions.append(of.ofp_action_output(port =

of.OFPP_FLOOD))

 msg.buffer_id = event.ofp.buffer_id

 msg.in_port = event.port

 self.connection.send(msg)

 def drop ():

 if event.ofp.buffer_id is not None:

 msg = of.ofp_packet_out()

 msg.buffer_id = event.ofp.buffer_id

 event.ofp.buffer_id = None # Mark is dead

 msg.in_port = event.port

 self.connection.send(msg)

 packet = event.parsed

 loc = (self, event.port) # Place we saw this

ethaddr

 oldloc = mac_map.get(packet.src) # Place we last

saw this ethaddr

 if packet.effective_ethertype ==

packet.LLDP_TYPE:

 drop()

 return

 if oldloc is None:

 if packet.src.is_multicast == False:

 mac_map[packet.src] = loc # Learn position

for ethaddr

 log.debug("Learned %s at %s.%i", packet.src,

loc[0], loc[1])

 elif oldloc != loc:

 if

core.openflow_discovery.is_edge_port(loc[0].dpid,

loc[1]):

 log.debug("%s moved from %s.%i to %s.%i?",

packet.src,

 dpid_to_str(oldloc[0].dpid),

122

Appendix C. Program code for Tutorial 3

oldloc[1],

 dpid_to_str(loc[0].dpid),

loc[1])

 if packet.src.is_multicast == False:

 mac_map[packet.src] = loc # Learn position

for ethaddr

 log.debug("Learned %s at %s.%i",

packet.src, loc[0], loc[1])

 elif packet.dst.is_multicast == False:

 if packet.dst in mac_map:

 log.warning("Packet from %s to known

destination %s arrived "

 "at %s.%i without flow",

packet.src, packet.dst,

 dpid_to_str(self.dpid),

event.port)

 if packet.dst.is_multicast:

 log.debug("Flood multicast from %s",

packet.src)

 flood()

 else:

 if packet.dst not in mac_map:

 log.debug("%s unknown -- flooding" %

(packet.dst,))

 flood()

 else:

 dest = mac_map[packet.dst]

 match = of.ofp_match.from_packet(packet)

 self.install_path(dest[0], dest[1], match,

event)

 def disconnect (self):

 if self.connection is not None:

 log.debug("Disconnect %s" % (self.connection,))

self.connection.removeListeners(self._listeners)

 self.connection = None

 self._listeners = None

 def connect (self, connection):

 if self.dpid is None:

 self.dpid = connection.dpid

 assert self.dpid == connection.dpid

 if self.ports is None:

 self.ports = connection.features.ports

 self.disconnect()

123

Appendix C. Program code for Tutorial 3

 log.debug("Connect %s" % (connection,))

 self.connection = connection

 self._listeners = self.listenTo(connection)

 self._connected_at = time.time()

 @property

 def is_holding_down (self):

 if self._connected_at is None: return True

 if time.time() - self._connected_at >

FLOOD_HOLDDOWN:

 return False

 return True

 def _handle_ConnectionDown (self, event):

 self.disconnect()

class l2_multi (EventMixin):

 _eventMixin_events = set([

 PathInstalled,

])

 def __init__ (self):

 def startup ():

 core.openflow.addListeners(self, priority=0)

 core.openflow_discovery.addListeners(self)

 core.call_when_ready(startup,

('openflow','openflow_discovery'))

 def _handle_LinkEvent (self, event):

 def flip (link):

 return Discovery.Link(link[2],link[3],

link[0],link[1])

 l = event.link

 sw1 = switches[l.dpid1]

 sw2 = switches[l.dpid2]

 clear = of.ofp_flow_mod(command=of.OFPFC_DELETE)

 for sw in switches.itervalues():

 if sw.connection is None: continue

 sw.connection.send(clear)

 if event.removed:

 if sw2 in adjacency[sw1]: del

adjacency[sw1][sw2]

 if sw1 in adjacency[sw2]: del

adjacency[sw2][sw1]

124

Appendix C. Program code for Tutorial 3

for ll in core.openflow_discovery.adjacency:

if ll.dpid1 == l.dpid1 and ll.dpid2 ==

l.dpid2:

if flip(ll) in

core.openflow_discovery.adjacency:

adjacency[sw1][sw2] = ll.port1

adjacency[sw2][sw1] = ll.port2

 break

 else:

if adjacency[sw1][sw2] is None:

if flip(l) in

core.openflow_discovery.adjacency:

adjacency[sw1][sw2] = l.port1

adjacency[sw2][sw1] = l.port2

bad_macs = set()

for mac,(sw,port) in mac_map.iteritems():

if sw is sw1 and port == l.port1:

bad_macs.add(mac)

if sw is sw2 and port == l.port2:

bad_macs.add(mac)

for mac in bad_macs:

log.debug("Unlearned %s", mac)

del mac_map[mac]

 def _handle_ConnectionUp (self, event):

 sw = switches.get(event.dpid)

 if sw is None:

sw = Switch()

switches[event.dpid] = sw

sw.connect(event.connection)

 else:

sw.connect(event.connection)

 def _handle_BarrierIn (self, event):

 wp = waiting_paths.pop((event.dpid,event.xid),

None)

 if not wp:

return

 wp.notify(event)

def launch ():

 core.registerNew(l2_multi)

timeout = min(max(PATH_SETUP_TIME, 5) * 2, 15)

 Timer(timeout, WaitingPath.expire_waiting_paths,

recurring=True)

125

Abstract and contents

АНОТАЦІЯ

УДК 004.7:004.6+004.415/.416](076.5)=111

В.В. Шкарупило, Р.В. Кудерметов, Д.С. Мазур, І.С. Скарга-Бандурова,
Л.О. Шумова, А.Ю. Великжанін, В.С. Харченко, Д.Д. Узун ,
Ю.О. Узун, П.А. Годованюк. Програмно-конфігуровані мережі та Інтернет
Речей: Практикум / За ред. Кудерметова Р.К. – МОН України, Національний
аерокосмічний університет ім. М. Є. Жуковського «ХАІ». – 129 с.

Викладено матеріали практичної частини курсу PC4 “ Програмно-
конфігуровані мережі та ІoТ ”, підготовленого в рамках проекту
ERASMUS+ ALIOT “ Internet of Things: Emerging Curriculum for
Industry and Human Applications” (573818-EPP-1-2016-1-UK-EPPKA2-
CBHE-JP).

Матеріали для практикуму повинні використовуватись
докторантами у галузі комп'ютерних мереж, інженерії програмного
забезпечення тощо та спрямовані на надання необхідних знань та
практичних навичок на тему використання емулятора Mininet для
вирішення типових інженерних завдань, що охоплюють, зокрема,
аспекти програмування - для вирішення завдань автоматизації. Крім
того, практикум присвячений інженерам та дослідженням, що
займаються розробкою, впровадженням та тестуванням IoT-рішень на
основі SDN.

Призначено для інженерів, розробників та науковців, які
займаються розробкою та впровадженням IoT систем, для аспірантів
університетів, які навчаються за напрямами IoT, кібербезпеки в
мережах, комп'ютерних наук, комп'ютерної та програмної інженерії, а
також для викладачів відповідних курсів.

Бібл. – 39, рисунків – 65, таблиць - 2.

126

Abstract and contents

ЗМІСТ

ПЕРЕЛІК СКОРОЧЕНЬ 3
ВСТУП 4
2.1. ОСНОВИ ПРОГРАМНО-КОРФІГУРОВАНИХ МЕРЕЖ 6
ЛАБОРАТОРНА РОБОТА. ВСТАНОВЛЕННЯ ТА КОНФІГУРАЦІЯ
СЕРЕДОВИЩА MININET 6
2.2. ПРОГРАМУВАННЯ ПРОГРАМНО-КОРФІГУРОВАНИХ МЕРЕЖ
ТА МОДЕЛЮВАННЯ СКЛАДАННЯ, КОНФІГУРАЦІЇ ТА
МАСШБАБУВАННЯ ПРОГРАМНО-КОРФІГУРОВАНИХ МЕРЕЖ 17
ЛАБОРАТОРНА РОБОТА. РОБОТА У ГРАФІЧНОМУ СЕРЕДОВИЩІ
MINIEDIT 17
2.3. АЛГОРИТМИ ТА ЗАСТОСУНКИ ДЛЯ ВИКТРИСТАННЯ
ТЕХНОЛОГІЇ ПРОГРАМНО-КОРФІГУРОВАНИХ МЕРЕЖ В
ІНТЕРНЕТІ РЕЧЕЙ 26
ЛАБОРАТОРНА РОБОТА 1. ЗАСТОСУВАННЯ ПЛАТФОРМИ
КОНТРОЛЛЕРУ ПРОГРАМНО-КОРФІГУРОВАНИХ МЕРЕЖ ONOS
ДЛЯ КЕРУВАННЯ МЕРЕЖАМИ ІНТЕРНЕТУ РЕЧЕЙ 26
ЛАБОРАТОРНА РОБОТА 2. ЯКІСТЬ ОБСЛУГОВУВАННЯ У
МЕРЕЖЕВОМУ СЦЕНАРІЇ ПРОГРАМНО-КОРФІГУРОВАНИХ
МЕРЕЖ З ВИКОРИСТАННЯМ POX КОНТРОЛЛЕРУ 42
ЛАБОРАТОРНА РОБОТА 3. ПЕРЕДАВАННЯ ПОТОКОВИХ ДАНИХ
ІНТЕРНЕТУ РЕЧЕЙ ПРОГРАМНО-КОРФІГУРОВАНОЮ МЕРЕЖЕЮ 56
НАВЧАЛЬНИЙ ПОСІБНИК 1. АЛГОРИТМИ ДЛЯ ОБЧИСЛЕННЯ
ОПТИМАЛЬНОГО РОЗМІЩЕННЯ КОНТРОЛЕРУ ПРОГРАМНО-
КОРФІГУРОВАНОЇ МЕРЕЖІ 69
НАВЧАЛЬНИЙ ПОСІБНИК 2. АЛГОРИТМИ ДЛЯ БАЛАНСУВАННЯ
НАВАНТАЖЕННЯ У ПРОГРАМНО-КОРФІГУРОВАНИХ МЕРЕЖАХ 76
НАВЧАЛЬНИЙ ПОСІБНИК 3. АЛГОРИТМИ ДЛЯ ПОШУКУ
НАЙКОРОТШОГО ШЛЯХУ В МЕРЕЖІ 83
2.4. РОЗРОБЛЕННЯ ПРОЕКТУ ДЛЯ SDN-DEVOPS З
ВИКОРИСТАННЯМ СУЧАСНИХ ЗАСОБІВ CI/CD 89
СЕМІНАР. МЕТОДОЛОГІЯ DEVOPS В КОНТЕКСТІ
ЗАСТОСУВАННЯ ПРОГРАМНО-КОНФІГУРОВАНИХ МЕРЕЖ ТА
ІНТЕРНЕТУ РЕЧЕЙ 94
ДОДАТОК А. НАВЧАЛЬНА ПРОГРАМА КУРСУ PC 2 101
ДОДАТОК B. ПРОГРАМНИЙ КОД ДЛЯ ЛАБОРАТОРНОЇ РОБОТИ 3 113
ДОДАТОК C. ПРОГРАМНИЙ КОД ДЛЯ НАВЧАЛЬНОГО
ПОСІБНИКУ 3 116
АНОТАЦІЯ ТА ЗМІСТ 125

127

Abstract and contents

ABSTRACT

UDC 004.7:004.6+004.415/.416](076.5)=111

Shkarupylo V.V., Kudermetov R.K., Skarga-Bandurova I.S., Velykzhanin

A.Yu., Shumova L.O., Mazur D.S., Kharchenko V.S., Uzun D.D., Uzun Y.O.,
Hodovaniuk P.A. Software defined networks and IoT: Practicum / Kudermetov R.K.

(Ed.) – Ministry of Education and Science of Ukraine, Zaporizhzhia National

Technical University, Volodymyr Dahl East Ukrainian National University, National

Aerospace University “KhAI”, 2019. – 129 p.

The materials of the practical part of the study course “PC2. Software

defined networks and IoT”, developed in the framework of the ERASMUS+

ALIOT project “Modernization Internet of Things: Emerging Curriculum

for Industry and Human Applications Domains” (573818-EPP-1-2016-1-

UK-EPPKA2-CBHE-JP).

Practicum materials are supposed to be used by PhD-students in sphere

of computer networking, software engineering etc., and aimed at delivering

the essential knowledge and practical skills on the topic of Mininet emulator

usage for the purpose of typical engineering tasks solving, covering, in

particular, the aspects of programming – for the purpose of automation

tasks solving. Practicum is devoted to development, implementation and
testing of SDN-based IoT-solutions. Moreover, techniques and tools of
DevOps application in context IoT and Big Data are described.

Practicum materials are intended to be used by the PhD-students which
are studied on computer networking software engineering, engineers and
researches involved in the development, implementation and testing of SDN-
based IoT-solutions, methodology and techniques of DevOps.

Ref. – 39 items, figures – 65, tables - 2 .

127

Abstract and contents

CONTENTS

ABBREVATIONS 3
INTRODUCTION 4
2.1. SOFTWARE DEFINED NETWORKS BASICS 6
LABORATORY WORK. INSTALLATION AND CONFIGURATION OF

MININET ENVIRONMENT
6

2.2. SDN PROGRAMMING AND SIMULATION OF SDN

COMPOSING, CONFIGURING AND SCALING
17

LABORATORY WORK. WORKING IN MINIEDIT GRAPHICAL

ENVIRONMENT
17

2.3. ALGORITHMS AND APPLICATIONS FOR UTILIZATION OF SDN

TECHNOLOGY TO IOT
26

LABORATORY WORK 1. APPLICATION OF ONOS SDN

CONTROLLER PLATFORM FOR IOT NETWORKS MANAGEMENT
26

LABORATORY WORK 2. QUALITY OF SERVICE IN SDN NETWORK

SCENARIO USING POX CONTROLLER
42

LABORATORY WORK 3. IOT DATA STREAMING OVER SDN 56
TUTORIAL 1. ALGORITHMS FOR CALCULATING THE OPTIMAL

POSITION OF THE SDN CONTROLLER
69

TUTORIAL 2. ALGORITHMS FOR LOAD BALANCING IN SDN 76
TUTORIAL 3. ALGORITHMS FOR FINDING THE SHORTEST PATH

IN NETWORK
83

2.4. DEVELOPMENT OF PROJECT FOR SDN-DEVOPS USING

MODERN CI/CD TOOLS
89

SEMINAR. METHODOLOGY OF DEVOPS IN CONTEXT OF SDN

AND INTERNET OF THINGS APPLICATION

94

APPENDIX А. TEACHING PROGRAM OF THE COURSE PC 2 101

APPENDIX B. PROGRAM CODE FOR LABORATORY WORK 3 113

APPENDIX C. PROGRAM CODE FOR TUTORIAL 3 116

ABSTRACT AND CONTENTS 127

Вадим Вікторович Шкарупило
Раіль Камілович Кудерметов

Деніс Сергійович Мазур
Інна Сергіївна Скарга-Бандурова
Лариса Олександрівна Шумова
Артем Юрійович Великжанін

Вячеслав Сергійович Харченко
 Дмитро Дмитрович Узун
Юлія Олександрівна Узун

Павло Андрійович Годованюк

ПРОГРАМНО-КОНФІГУРОВАНІ МЕРЕЖІ ТА
ІНТЕРНЕТ РЕЧЕЙ

Практикум
(англійською мовою)

Редактор Кудерметов Р.К.
Комп'ютерна верстка

Р.К. Кудерметов,
О.О. Ілляшенко

Зв. план, 2019
Підписаний до друку 27.08.2019

Формат 60х84 1/16. Папір офс. No2. Офс. друк.
Умов. друк. арк. 7,09. Уч.-вид. л. 7,62. Наклад 150 прим.

Замовлення 270819-2

Національний аерокосмічний університет ім. М. Є. Жуковського
"Х а р к і в с ь к и й а в і а ц і й н и й і н с т и т у т"

61070, Харків-70, вул. Чкалова, 17
http://www.khai.edu

Випускаючий редактор: ФОП Голембовська О.О.
03049, Київ, Повітрофлотський пр-кт, б. 3, к. 32.

Свідоцтво про внесення суб'єкта видавничої справи до державного реєстру видавців,
виготовлювачів і розповсюджувачів видавничої продукції

серія ДК No 5120 від 08.06.2016 р.

Видавець: ТОВ «Видавництво «Юстон»
01034, м. Київ, вул. О. Гончара, 36-а, тел.: +38 044 360 22 66

www.yuston.com.ua
Свідоцтво про внесення суб’єкта видавничої справи до державного реєстру видавців,

виготовлювачів і розповсюджувачів видавничої продукції
серія ДК No 497 від 09.09.2015 р.

	ALIOT_PC2_SDN and IoT_cover
	ALIOT_PC2_SDN and IoT
	PC2_SDN and IoT (друк)
	PC2_SDN and IoT!!!!!!!!!!!!.pdf
	АНОТАЦІЯ

